
' " DTIC
ELECT -,

fJUL31 1991

CU CEESC-R-91 -20

AD-A238 846l11iil lII III III1lBl1l1l11

A THREAT-BASED

THEATER WAR DAMAGE

METHODOLOGY

-f

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704.0188

Pu oic reoortin9 burden for this rOlection ot ,nfcrmatOn is estimated to 4.eragL t hour oer tasooise inciLoinq te-e time le reviewmnq instructions searcriln existing data sources.
gathering and maintaining the dita needed ,o moOetiing anre nd= n orp te colle'tion of information Sono comments roirding th$is burden estimate or any other asoect of this
collectiOn of i ormation, includio suggestions for frducino tr's ouroen To OVshnqton HieAoouarters.erices .: rectOrate for inform titon OPerations and gHIoorts. I 15 Jefferson
OriSf Highw av, Suite 1204. Arlinoton. VA 22202 4 02 and to th* Office of %lanqiement And Iludget P 1erwcrK Reduction Poect (070.1 0 188). Washington, OC 20503.

1. AGENCY USE ONLY (Leave'blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

JUNE 1991 FINAL (JANUARY 1991 to JUNE 1991)
4. 1,;LE AND SUBTITLE 5 FUNDING NUMBERS

A THREAT-BASED THEATER WAR
DAMAGE METHODOLOGY

OMA
6. AUTHOR(S)

ROBERT H. HALAYKO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. rERFORMING ORGANIZATION
REPORT NUMBER

U.S. ARMY ENGINEER STUDIES CENTER
CASEY BUILDING #2594
FORT BELVOIR, VA 22060-5583 CEESC-R-91-20

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

JOINT CHIEFS OF STAFF AGENCY REPORT NUMBER

DEPUTY DIRECTOR FOR PLANS AND RESOURCES, J4
THE PENTAGON N/A
WASHINGTON, DC 20318-4000

11. SUPPLE.',ENTARY NOTES

12a. DISTR IBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION IS UNLIMITED

13. ABSTRACr (Maximum 200 words)

Engineers are responsible for repairing or replacing war-damaged sustainment base facilities. Planning for the
amounts and kinds of war damage repair is, however, confounded by the vagaries of war. Theater wargames
generally ignore damage at rear-area installations, and war damage models typically confine their analysis to direct
and collateral facility damage at one installation under one attack. The Engineer Studies Center (ESC) has used
various approaches to estimate theater damage in its series of engineer assessments. In its most recent studies,
ESC has developed general methodology and a PC-based computer program that extends the capabilities of the
installation-level damage models to theater-level analysis. The approach incorporates scenario data and actual
threat capability to estimate damage by facility, installation, and time. The primary purpose of ESC's threat-based
methodology is to provide engineers a rough, but reproducible and rational, estimate of war damage for planning
purposes. The accessibility of the program and the relative immediacy of results enable the user to quickly explore
alternative scenarios or hypotheses. This report describes that methodology and the damage model upon which
it relies.

14. SUBJECT TERMS 15. NUMBER OF PAGES
* 124

WAR DAMAGE; REPAIR; INSTALLATIONS; FACILITIES; 16. PRICE CODE

MODEL; OBJECT-ORIENTED PROGRAMMING; TARGETING

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7"40-01-280"5500 Standard Form 298 (Rev 2-89)

orresetf'o- Oy S'; . td i 19.18l ,

- 1TICOJ.ih C
u'" iAoswt n v e*I

IDistrtbution/
I AV.tlability Codes

! Tva i and/or

'Dist Speoial

A THREAT-BASED

THEATER WAR DAMAGE

METHODOLOGY

Prepared by
Engineer Studies Center

U.S. Army Corps of Engineers

June 1991

ACKNOWLEDGMENTS

This report was prepared by Mr. Robert Halayko, Project Manager, U.S. Army Engineer
Studies Center, under the supervision of Mr. Michael Kishiyama, Senior Project Manager. The
methodology described in this report is a synthesis of data and methods developed by Mr. Salva-
tore Cremona, Major Dale Bleckman, and Mr. Richard Taylor of the Engineer Studies Center for
the Joint Operational Assessment, Engineer Requirements: European Southern Region study. Mrs.
Sally Bond provided the editorial support. ESC wishes to thank Colonel James Jenkins, Office of
Joint Chiefs of Staff, for sponsoring the documentation of this methodology; Commander Robert
Hood, U.S. Navy Facilities Engineering Command, for his interest in making this method more
widely available; and Mr. Kevin Hager, Naval Civil Engineer Laboratories, for his assistance with
the Naval Air Attack Simulation Program.

iiS

DISTRIBUTION

No. of
Copies

Joint Chiefs of Staff, ATTN: (J-4) Logistics Directorate,
Washington, DC 20318-4000 2

Joint Chiefs of Staff, A'TTN: (J-8) Force Resource, Structure and
Assessment Directorate, Washington, DC 20318-5000 2

Headquarters, U.S. Air Force, The Civil Engineer, ATTN: AF/CE, The Pentagon,

Washington, DC 20330-5425 2

Chief of Naval Operations, ATrN: OP44, Washington, DC 20350 2

Headquarters, U.S. Marine Corps, ATTN: MC-L, Washington, DC 20380 2

Department of the Army, Office of the Assistant Chief of Engineers,
ATTN: DAEN-ZCM, Washington, DC 20310-2600 2

Deputy Under Secretary of the Army (OR), The Pentagon, Room 2E660,
Washington, DC 20301 1

Commander in Chief, U.S. Central Command, ATTN: CCJ4/7-E,

MacDill Air Force Base, FL 33608-6001 2

Headquarters, U.S. European Command, ATTN: ECJ4-LIE, APO NY 09128 2

Headquarters, U.S. Air Force Europe, ATTN: DEMRX, APO NY 09094-5001 1

HQ, U.S. Army Europe, ATIN: AEAEN-IM, APO NY 09403 1

Commander in Chief, U.S. Naval Forces Europe, ATIN: N75, FPO NY 09510-0151 1

Commander, Southern European Task Force, ATIN: AESE-EN, APO NY 09168-5125 2

Commander in Chief, U.S. Pacific Command, ATTN: J-44,
Camp Smith, HI 96861-5025 2

ROK/U.S. Combined Forces Command, ATrN: CFEN, APO SF 96301-0028 1

ROKIU.S. Combined Forces Command, ATrN: CFOA, APO SF 96301-0028 1

Commander, U.S. Army Pacific, ATTN: APEN, Fort Shafter, HI 96858-5100 1

Headquarters, Pacific Air Forces, ATMN: OA, Hickam AFB, HI 96853 1

0 ,,11

No. of
Copies

Commander in Chief, U.S. Southern Command, ATTN: SCEN,
APO Miami, FL 34003 2

Commander, U.S. Army Forces Command, ATTN: FCEN-MD,
Fort McPherson, GA 30330-6000 1

Commander in Chief, U.S. Atlantic Command, ATTN: J4, Norfolk, VA 23511-5100 2

Commander, Atlantic Division, Naval Facilities Engineering Command,
Norfolk, VA 23511-6287 1

Commander, 412th Engineer Command (FWD), APO New York 09081 1

Commander, 412th Engineer Command, ATFN: AFKD-GCH-FW, Box 55,
Vicksburg, MS 39180-0055 1

Commander, 416th Engineer Command, ATTN: CESP, 4454 West Cermak Road,
Chicago, IL 60623 1

Commandant, U.S. Army Engineer School, ATIN: Directorate of Combat
Developments, Concepts and Studies Branch, Fort Leonard Wood,
MO 65473-6600 1

Naval Facilities Engineering Command, ATTN: NFAC-06, Hoffman Bldg,
200 Stovall Street, Alexandria, VA 22332-2301 1

Navy Civil Engineering Laboratory, ATI'TN: L53 (Kevin Hager),
Pt. Hueneme, CA 93043-5003 1

Joint Data Systems Support Agency, ATTN: JNSLL, Washington, DC 20310-5000 1

U.S. Air Force Engineer Service Center, ATTN: DEO, Tyndall AFB, FL 32403 1

U.S. Army Concepts Analysis Agency, 8120 Woodmont Avenue,
Bethesda, MD 20814-2797 1

Headquarters, U.S. Air Force Center for Studies & Analysis, ATTN: AFCSA,
The Pentagon, Washington, DC 20330-5425 1

The Rand Corporation, 1700 Main Street, P.O. Box 2138,

Santa Monica, CA 90406-2138 1

Defense Intelligence Agency, Boiling AFB, Washington, DC 20332 1

Commander, U.S. Army Intelligence and Analysis Center, ATrN: AIAIT-M,
Building 203 (STOP 314), Washington Navy Yard, Washington, DC 20374 1

iv

SL

No. of
Copies

Defense Logistics Studies Information Exchange, U.S. Army Logistics.
Management Center, Fort Lee, VA 23801 2

Defense Technical Information Center, ATTN: DTIC-FDAC, Cameron Station,
Alexandria, VA 22304-6145 2

The Pentagon Library, ATrN: Army Studies, The Pentagon, Room 1A518,
Washington, DC 20310 2

U.S. Army Engineer Studies Center, Casey Building 2594, Fort Belvoir,
VA 22060-5583 15

TOTAL 68

Sv

S

S

S

S

Blank Page S

S

'S

S

S

vi S

CONTENTS

:S -tion Page

SF 298
ACKNOWLEDGMENTS ... ii
DISTRIBUTION ... iii
CONTENTS .. vii
ABBREVIATIONS AND ACRONYMS ix
EXECUTIVE SUMMARY ... xi

I. INTRODUCTION ... 1
PURPOSE ... 1
BACKGROUND .. 1

II. METHODOLOGY ... 3
APPROACH ... 3
DAMAGE PROFILE DEVELOPMENT 3
THEATER ASSESSMENT .. 7
ASSUMPTIONS .. 8

III. APPLICATION ... 11
IN PU T .. 11
O UTPUT .. 11
PROGRAM DESIGN .. 13
MODELS EXECUTION .. 14

IV. SUM MARY .. 17
FUTURE ENHANCEMENTS .. 17
ASSESSM ENT ... 18

figure

1 WAR DAMAGE METHODOLOGY CHART 4
2 OBJECT CLASS HIERARCHY OF DAMOC 14

ANNEX A: DAMOC INPUT A-1
ANNEX B: OUTPUT DESCRIPTIONS B-i
ANNEX C: DAMOC DOCUMENTATION C-1

APPENDIX C-1: SIMSETx PROGRAM LISTING C-1-1
APPENDIX C-2: COMMZ PROGRAM LISTING C-2-1
APPENDIX C-3: DAMOC PROGRAM LISTING C-3-1

STUDY GIST

vii

S

S

S

S

S

Blank Page S

S

S

S

S

viii S

ABBREVIATIONS AND ACRONYMS

AAP Attack Assessment Program
AFCS Army Facility Component System
AIDA Air Base Damage Assessment Model
AR Army Regulation

BBL barrel

CAA U.S. Army Concepts Analysis Agency
CEP circular error probability
CESPG Civil Engineering Support Plan Generator
COB collocated operating base
COMMZ communications zone
COSAGE Combat Sample Generator

DAMOC Damage Allocation Model
DOD Department of Defense

EA each
ESBAS Engineer Studies Center Bomber Assessment Study
ESC Engineer Studies Center

FEBA forward edge of the battle area

GAL gallon
GEOLOC geographical location

HQDA Headquarters, Department of Defense

JCS Joint Chiefs of Staff
JEPES Joint Engineer Planning and Execution System
JOPS Joint Operation Planning System

KW kilowatts

ix

MOB main operating base
MOS minimum operational strip

NAASP Naval Air Attack Simulation Program model
NATC North Atlantic Treaty Organization
NCAF nuclear capable airfields

OOP object-oriented programming

PC personal computer
PMD postmortem dump
POL petroleum, oils, and lubricants

RAM random access memory

SEAC Simulated Engineer Assessment of
the Communications Zone Model

SOF special operations forces
SPANS spans
SPETSNAZ Soviet Special Purpose Forces (SPF)
SSM surface-to-surface missiles

U.S. United States
USAF United States Air Force

xS

EXECUTIVE SUMMARY

In addition to their mission of constructing and maintaining the theater sustainment base,
engineers are responsible for repairing or replacing war-damaged facilities. Planning for the
expected amount and kinds of repairs, however, is confounded by the vagaries of war. Theater
wargames typically ignore rear area installations, much less attempt to estimate what damage
might occur over the course of a campaign. Installation-level models, that estimate the effect of
individually targeted munitions and the expected resulting direct and collateral facility damage,
currently exist. However, such programs are limited to one installation under attack and require
too much specificity to be useful at theater-level.

The U.S. Army Engineer Studies Center (ESC) has used various approaches to this problem
when performing engineer assessments of the major theaters where U.S. forces might be de-
ployed. In its most recent studies, ESC developed a methodology that objectively addresses
theater war damage. Building on the capabilities of the installation-level models, ESC formulated
an approach that utilizes the best available intelligence and estimates of enemy capability to
project theater damage by facility, installation, and time. This report describes that methodology

* and provides guidarce on how it could be used and implemented elsewhere.

Much of the methodology is embodied in a computer program that ESC developed--the
Damage Allocation Model (DAMOC). The program was designed to run on any PC-compatible
microcomputer. It is written in TURBO PASCAL 5.5, a computer language which supports
object-oriented programming (OOP). This software engineering approach is receiving much
attention in computer circles, especially in the areas of modeling and simulations. ESC was able
to combine its past experience using OOP with PASCAL's features to construct an efficient and
extensible model. The resulting design of DAMOC proved to be a great advantage during imple-
mentation, especially when making changes and improvements to the model. Because of relative-
ly few object-based operational models in use, software designers might find DAMOC to be of
interest apart from its functional representations.

Overall, the accessibility of the system, the separation of facility damage and targeting, and
the relative ease of use enable the user to utilize varying amounts of available information to
estimate damage and to quickly explore alternative scenarios or hypotheses.

ESC encourages prospective users to request a copy of a distribution diskette that contains
DAMOC, test data, and sample files. Such inquiries should be made directly to the Office of the
Director, U.S. Army Engineer Studies Center, Casey Building 2594, Fort Belvoir, Virginia
22060-5583; phone number (703) 355-2373.

xi

Blank Page

AS

I. INTRODUCTION

1. PURPOSE. This report describes a methodology developed by the U.S. Army Engineer
Studies Center (ESC) to assess theater war damage to facilities. It documents the data, design,
and operation of a threat-based process to generate expected facility-level war damage at installa-
tions across a theater. In addition, it documents a damage allocation model that ESC developed
as a major component of the process.

2. BACKGROUND. One of the more difficult aspects of war planning is assessing facility
damage--what was damaged, what must be repaired, and how does it affect mission accomplish-
ment. An air base that is fully functional may not require additional facilities to support its units.
But if that base is attacked, engineers will be needed to repair runways, erect petroleum, oil, and
lubricant (POL) storage, or restore operational and maintenance facilities.

a. Over the years considerable effort has been expended trying to estimate these re-
quirements. Some models have gone to great lengths in simulating an attack and recording the
damage (direct and collateral) by using explicit facility and munitions characteristics. The U.S. Air
Force (USAF), in conjunction with the RAND Corporation, has developed several air base attack
models: AIDA' and TSARINA2. These RAND models explored issues such as optimal attack
strategy and effect on sortie generation capability. The Attack Assessment Program3 (AAP) is
another installation damage model. It is used as a front-end for damage input to the Civil Engi-
neer Support Plan Generator (CESPG),4 the Department of Defense'. (DOD) approved engi-
neer support model. More recently, the Navy has adapted the AAP to run on any IBM-compat-
ible personal computer. The common trait of all these models, howcver, is that they tend to deal
with a single installation and the effect damage has on operational capability. There is no easy
way for analysts to extrapolate from individual installation damage to theater requirements.

b. ESC's interest, however, was broader and twofold--to estimate war damage for the
entire theater and campaign, and to derive the resulting engineer workload. Since the mid-1970s,
ESC has conducted many studies' that examine wartime engineer support across the entire com-
munications zone (echelons above corps) and use different approaches. The CESPG can accept

D. E. Emerson,AIDA: AnAir Base DamnageAssessmnent Model, R-1872-PR (The Rand Corporation, September 1976).
2 D. E. Emerson and Louis H. Wegner, TSARINA--A Computer Modelfor Assessing Conventional and Chemical Attacks

on Air Bases, N-2244-AF (The RAND Corporation, August 1985).
3 Attack Assessment Program (AAP), CCTC, Computer Systems Manual, CSM UM 267-81 (1 March 1981).
4 Joint Operation Planning System (JOPS).-Civil Engineering Suppot Plan Generator (CESPG) User's Manual, Computer

Systemn Manual CSM UM 122-86 (1 April 1986).
. Bomb Damage to Critical U.S. Facilities in Europe (ESC, May 1981).
- Engineer Assessment, Korea: Communications Zone Analysis (ESC, August 1987).
- Soviet Air and Unconventional Warfare Damage, Southwest Asia (ESC, September 1987).
- Joint Operational Assessment, Engineer Requirements, European Southern Region (ESC, February 1991).

direct or indirect repair tasks, but does no damage or threat calculations. When and where the
damage occurs must be done off line. The Simulated Engineer Assessment of the Communica-
tions Zone Model (SEAC)6 incorporated threat-based damage into an engineer workload model.
While this general model incorporated both the calculation of damage at the facility-ordnance
level and the engineer capability to repair it, it still required off-line target specification. ESC still
needed a better means to generate war damage--one that would avoid the need to explicitly
represent every facility in theater, and at the same time, would tie damage to threat capability.

6 Simulated Engineer Assessment of te Commiunications Zone Model (SRAC), Documnentation and Users Manual
(ESC, June 1988).

2

II. METHODOLOGY

3. APPROACH. ESC's objective was to develop a reasonable and reproducible, threat-
based system to estimate facility damage across a theater. The system that evolved was very
similar to the hierarchical structure espoused in AR 5-117. That regulation established an objec-
tive that components in the Army's combat model hierarchy would be able to interface. One
means to accomplish this could be to use ".... libiaries of previous results from those components
.... I While the Army still awaits seamless interconnections, the linking of models of different

resolution is routinely done.

a. To conduct theater analysis, the U.S. Army Concepts Analysis Agency (CAA) first
uses the Combat Sample Generator (COSAGE), a stochastic division-level model, to construct a
library of battle results. These "killer/victim scoreboards" record the average attrition rcsults of
replicating simulations of different posture and force structures. The scoreboards are then used
by CAA's deterministic theater models as data-points in a result n-space from which new out-
comes are interpolated.

0 b. ESC followed a similar two-phased approach. A detailed installation-level damage
model is used to generate a library of attack results (damage profiles). The library is then one
input to the deterministic theater damage assessment model along with scenario specific informa-
tion regarding threat capability and targets. Figure 1 portrays this methodology.

* 4. DAMAGE PROFILE DEVELOPMENT. Initially, ESC intended to use one of the instal-
lation-level models to calculate damage at each target and to aggregate the results by time and
location. From available models, ESC selected the PC-based Naval Air Attack Simulation Pro-
gram (NAASP)9. This is a stochastic model which replicates proposed attacks many times to
produce an expected level of damage. However, the user must provide a laydown of installation
facilities and various attributes of the contemplated attack, some of which require additional off-
line calculations. ESC's attempt to use the NAASP for each installation target in a theater
proved easier in concept than in practice. The problems, however, might have been fortuitous.
Modifications made to ESC's initial approach resulted in a method that more equitably treats
threat capability with blast and fragmentation effects. The lynchpin was the development of
damage profiles.

7 Army Model Inprovement Program, AR 5-11 (IIQDA, August 1981).
8 Ibid., page 1-4.

9 J. Ferritto and K. llagcr, User's Guide for Conventional Weapons Effects Survivability Computer P-rograms, UG-0012
(Naval Civil Engincering Laboratory, Fcbruary 1988).

* 3

DAMAGE PROFILE DEVELOPMENT

DVLPDETAILED CREATE
ATTACK GNOTIONAL/

PACKAGESINSTALLATION
AANTMDLFACI~LY

INTLAT0N OS)SITE PLANS

I INSTALLATION DAMAGE TEMPLATES

______LA

F TR BMBR
SOF SSM

_I I

- ---- - -- --- --- - - - -- - - - -- -

TH[EATER ASSESSMENT

ANALYZE LOCATECLASSIFYK
I THREAT & PRIORITIZE

I TARGETS 0

THREAT BASE MDLISALTO
IFIL

DAMAGEAOCTO FIL ARET/

DEFINLLATOO

I I

I MO

I Summarized DamageI0
by period &
CATCODE

Figure 1. WAR DAMAGE MErHODOLOGY CH1ART

40

a. Notional Installations. ESC initially planned to use the NAASP with data digitized
from actual installation site plans. Each installation target within a theater would be attacked,
and facility damage recorded. This ambitious approach quickly became unrealistic in execution.

(1) A variety of problems arose: installation site plans often were not available
(especially for non-U.S. targets); even when site plans were available, sc,,laig problems frustrated
accurate digitization; frequently the category (e.g., construction standard, building usage) of
facilities within an installation could not be established; and the time to complete one target
precluded individual NAASP runs. There were also mechanical difficulties associated with con-
verting installation data into the NAASP's digitized format. It was no easy matter to ensure that
the data was formatted correctly. When an installation was digitized, numerous NAASP runs
were required to refine data input until it was correct and until the program executed as
intended.

(2) Based on the general unavailability of installation information and inaccuracies
within the available data, ESC analysts resorted to notional installations as a way to ensure com-
plete and consistent input data. After reviewing the classes of installation targets encountered in
a theater on which information was available, patterns of typical facilities at installations of similar
function were constructed; e.g., air bases have runways and communication facilities; ports have
piers and storage. These were used as surrogates for actual site plans in the NAASP. The
expected damage was subsequently used for all attacks against targets of the particular notional
installation class. Development of the notional installations guaranteed that critical facilities were
always considered and solved the building type and use problems that were encountered when
interpreting real installation site plans.

(3) Development of the notional installations guaranteed that critical facilities
would not be overlooked. It also solved the building type and use problems encountered when
interpreting real property inventories and installation site plans. The advantages of using uniform
templates for targeted installations out-weighed the probably illusory advantages of using actual
site laydowns, especially when plans existed for only a small portion of the targets. Ultimately,
facility laydowns were defined for 27 different notional installations.'

(4) The assumption that notional installations can be used throughout the theater
raises an even broader possibility--if a notional installation is representative of the class of theater
targets with similar functions, can this same notional design be used for similar targets in other

10 ESC-defined notional installation classes for a Southern European scenario:

Main Operating Bases Collocated Operating Bases
Telecommunication Sites (fixed) Field Camps
Telecommunication Sites (field) Hawk Sites
Large Ports Large POL Installation
Small Ports Small POL Installation
NATO Pipeline Tictical POL Facility
Ammunition Depot (fixed) Storage Depot (fixed)
Ammunition Depot (field) Storage Depot (field)
Electric Power (fixed) IIighway (4-lane)
Electric Power (field) Highway (2-lane)
Bridge (highway) Tunnel (highway)
Bridge (railroad) Tunnel (railroad)
Railroad Lines Switching Yard
Water Storage

S 5

theaters? To a great degree, one would expect that a Southwest Asian air base would have an
inventory of core facilities very similar to an air base in North America. In fact, this commonality
is the underlying basis for the facility component planning systems found in each of the services.
If some or all notional installations can be used across theaters, the benefit is obvious--it obviates
the need to develop a completely new set of notional installations, attack packages, and damage
profiles." The library of profiles could then be used when a quick reaction answer forecloses
any possibility of running NAASP-like analysis of actual installation attacks.

b. Attack Packages. Deciding on how much and what type of threat capability should
be used against a target is not automatic. What level of damage is required? What threat assets
are necessary to achieve that damage? The NAASP looks only at the characteristics (amount,
accuracy, target point, etc.) of the ordnance and affected facilities to measure damage. The
targeteer must, therefore, first determine what assets are available to cause damage.

(1) ESC defined four types of threat attack systems: fighter-bombers, bombers,
special operations forces (SOF), and surface-to-surface missiles (SSM). These types then had to
be defined in terms that could be used by th.e NAASP. The packages were engineered in reverse.
First, the facilities to be attacked and the amount of damage to be achieved were specified.
Then, to achieve the desired level of damage, the size and conduct of the attack was developed by
trial and error means. These levels might be considered thresholds where a point of diminishing
return for additional sorties has been reached (it is primarily characteristic of fighter or bomber
attacks). SOF and SSM attacks were never presumed to destroy enough facilities at larger instal-
lations. (NOTE: Air, SOF, and SSM thresholds are separate. Meeting the bomber sortie satura-
tion level will not foreclose either SSM or SOF attacks against that installation. It would, howev-
er, cutoff any additional fighter attacks.)

(2) To simplify the process, ESC standardized on an air sortie that delivered two
FAB 250s. Package requirements were measured in terms of these "standard sorties." Fighter
and bomber assets were similarly measured by the "standard sorties" they would provide. Thus,
one SU 24 Fencer variant (external load 24,000 Ibs) might be rated 3 times greater than an SU
22 Fitter (external load < 7,000 lbs).

c. Damage Profiles. A damage profile is comprised of facilities dama-ged when a
defined threat package attacks a specific installation. The prof'le defines which, and to what
extcrt, facilities are damaged on an installation. NAASP results provide a list of facilities,
amotnts, and expected damage percentages, hits, and critical craters. To this information ESC
adds the size of threat packages that induced the damage and the JCS category codes' 2 for the
various facilities. The threat size, facility information, and attack results comprise a damage
profile. Profiles must be developed for each threat type, notional (or real) installation combina-
tion for which damage is to be considered in the scenario. (The user may choose not to construct
profiles for unlikely uses--e.g., an SSM, with a large circular error probability (CEP), against a
small highway tunnel portal.) These profiles make up the library used for theater damage assess-
ments.

1 bcre is no inherent obstacle to combini% notional and real installation targets in a theatcr anal)sis. If good site plans
exist for particular installations and time to make individualized NAASI' runs is available, one should take advantage of the
opportunity. The attacks against actual installations simply become damage profile templates for which only one target entry
%ill corresxnd.

12 Deptitment of Defense Faciliy Clsses and Construction Categories, DOD Instruction 4165.3 (24 October 1978).

6

5. THEATER ASSESSMENT. As described in the introduction, installation-level damage
models have long been available. The previously missing piece of the puzzle was the ability to go
beyond installation damage models and estimate damage for the entire theater for the entire
campaign. ESC's Damage Allocation Model (DAMOC) provides a solution. DAMOC is an
allocation model more than a damage model because it distributes threat assets among theater
targets according to defined priorities and constraints. Damage is calculated by referencing the
appropriate entry in the profile library. The calculations already made in the detailed damage
model are not repeated. Theater damage thus becomes a function of how threat assets can be
allocated against identified targets. By focusing on available enemy capability, ESC has achieved a
threat-based approach to theater damage (as opposed to the sometimes-used worst-case approach
which assumes that all targets are hit). The allocation models' threat handling offers many tangi-
ble features that, up :o now, have not been linked to a damage model in oie trig system.

a. Threat Sortie Manipulation. Through the manipulation of both global and local
asset-specific factors that influence sortie generation, the user can exercise a great deal of control
over allocations. Specific characteristics of different threat assets must be defined, and bases or
launch sites for threat assets must be identified. The ability to move assets from one base to
another permits the user to tailor redeployments within, into, or out of the theater. This enables
evaluation of different targeting strategies, or alignment of sorties, with estimates from more
sophisticated air models. Ideally, threat sortie information should be based to some degree on the
results of a high resolution air simulation. For example, in one application of its damage method-
ology, ESC was able to incorporate sortie and attrition results achieved by CAA.Y3

b. Ranging. Geographic coordinates must be entered for both targets and threat bases.
The model calculates the distances between base and target to determine if target is within range
of threat assets at the base.

c. Suppression. Attacking an air base with a full fighter package will achieve an
expected level of damage. While this might render the base inoperative for a while, the possibility
exists that if the "critical craters" are fixed, a minimum operational strip would be available. In
recegnition of this, the allocation model can be directed to attack the runway surface periodically
to suppress air base operations.

d. Data Driven. Both the NAASP and DAMOC are data driven. The entire process,
from preparing NAASP input to defining target installations, is user defined. In other words,
there should be no reason why either the damage or allocation programs would have to be
changed and recompiled under normal circumstances. Consequently there is no compelling need
to understand how either of the models (particularly ESC's allocation model) accomplish their
tasks internally. However, if a damage model other than the NAASP were used, this might not
be true.

e. User-defined Summaries. The objective of the damage methodology is to provide
expected facility damage. There arc available reports on damage information at the facility (JCS
category code [CATCODEJ) level for each installation and on summarized damage information
for specific time periods across the theater.

13 L ngineer Studies Center Bomber Assessment Study (ESBAS), CAA-MR-90.47 (U.S. Army Concepts Analysis Agency,
September 1990). Thc study relied on the COMO Integrated Air Defense Model to provide the Corps of Engincers the
number of enemy bombers that can reach air bases This information was then used to generate emergency war damage
repair rcquircments.

S 7

f. PC-BIIsed. One of the advantages of ESC's approach is that it can all be done on a
PC-compatible microcomputer. To further maximize program execution capability, most input in
the allocation model is saved in dynamically allocated memory locations, rather than fixed arrays. •
The accessibility and general capability of the methodology facilitates use. It also increases the
likelihood of experimentation and alternative evaluations. The ubiquitous PCs also guarantee
portability.

6. ASSUMPTIONS. Despite our best intelligence gathering efforts, when war starts no one •
can predict how an enemy will choose to attack U.S. and allied bases. Munitions effects can be
modeled with great accuracy if we know the aim point and the proximate facilities. But how
confident can one be that the munitions get to the target, or that the target has even been select-
ed by the enemy. The situation is analogous to the Heisenberg Uncertainty Principle--the greater
our quest for accuracy, the greater our associated error. With that in mind, ESC made several
assumptions in confecting its methodology. •

a. Threat Assignment. It is conceivable that intelligence means might obtain enemy
attack plans prior to hostilities and know exact targeting information. But once that attack
begins, attrition, maintenance, counterattacks, mission success, forward edge of battle area
(FEBA) movement, etc. make it difficult to estimate what would happen in the following days, 0
much less predict events weeks or months later. ESC concluded that it is impossible to predict
these events with any certainty. The best compromise is to adopt a consistent and reproducible
method that can oe manipulated easily to examine different assignment schemes.

b. Sortie Equivalence. The damage model used by FSC to assess installation level
damage did not concern itself with how munitions got to a target--its needs were for munitions 0
attributes (fuzing, aiming errors, etc.), not the performance specifications of the delivery platform.
To reduce complexity and situations for evaluation, ESC standardized using one conventional
munition. 4 This meant that only one fighter bomber configuration needed to be defined. That
definition would be in terms of the number of those munitions it could carry. For example,
suppose the nominal weapon pattern/load is 4 standard bombs. If a SU-24 Fencer carries 4 0
bombs and a MIG-27 Flogger carries 6, then each Fencer contributes 1 standard sortie, while
each Flogger is worth 1.5 for sortie capability purposes.

c. Allocation Rules. Deciding how many attacks should be made against a target is a
function of several factors: type of installation, type and amount of facilities, number of available
attackers, amount of damage from prior attacks, and the priority of the target. ESC adopted a i
straight-forward rule that considered these factors during targeting. ESC assumed that it was
better to apply reasonable criteria consistently, than to try to intuit the thoughts of threat plan-
ners. As a compromise, ESC settled on defining attack packages whose expected results would

0

14 The Soviet FAB-250 General Purpose Bomb with instantaneous fuze. See Red.on.Blue Manual (Effectiveness
Es!tinates for Soviet/lVarsaw f'act Nonnuclear Munihion)(U), 61 JTCGIME-77-15 (Rev. 1, 1 October 1982, Change 2--30
April 1986).

8

achieve the desired level of damage. Allocation was made according to target priority. ESC
assumed a simple, preemptive priority rule: the value of a target installation corresponded to its
relative location in the theater target list. 5 For example, the third target in the list would be
attacked, if possible, before the fourth.

d. Proportionality. ESC associates a certain number of threat assets with a desired
level of damage. Once sufficient threat assets are directed against a target, the model will look to
target installations of lower priority. Frequently, available sorties will fall short of required attack
levels. Rather than use an "all or nothing" strategy, ESC's methodology allocates what it has
available. In the damage model, attacks are directed against specific facilities. If only half of the
required number of sorties are allocated, then one would expect that only half of the targeted
facilities will be hit. Since ESC does not know which half of the facilities were hit, damage and
hits to facilities are prorated according to the proportion of sorties actually sent and the amount
needed for the desired level of damage.

IS The user should be aware that there is no attempt to optimize sortie allocation with regard to coverage. Like targets,
threat assets are allocated sequentially. The program does not look at all assets to find the ones whose range comes closest
to the distance to the current target. Therefore, the user should list threat assets in the TIIREAT file according to range--
shorter range assets at the beginning, longer range at the end.

9

Blank PageS

10

Ill. APPUCATION

7. INPUT. The two-step damage process (explicit installation damage, theater allocation)
raises the need for two sets of input. The user should refer to the NAASP documentation (or to
appropriate references if another damage model is used) for its input requirements to produce the
damage profiles. DAMOC data requirements are briefly described below. More definitive
descriptions appear in Annex A.

a. Threat Assets. Threat data drives the allocation model. Nothing happens unless
attacks can be made. The most important threat asset data element is its type. The attack
packages derived from the NAASP use four threat types: fighters, bombers, SOF, and SSM.
Threat assets are the actual systems derived from intelligence and planning sources for which a
type must be designated. In addition to the type, a user can define up to three theater move-
ments, as well as performance, attrition, and availability data for each threat asset. Distinctions
are drawn among different rates for different types; therefore, the user is advised to consult the
associated descriptions found in Annex A.

b. Threat Bases. To facilitate managzment of threat assets, they must be associated
with individual bases. While this refers primarily to threat air bases, it can, however, be broadly
viewed to include SSM launch points and tactical helipads used for SOF insertions.

e. Notional Installation Classes. The allocation model uses installation damage data
produced by the detailed damage model. For each class of notional installations, damage profiles
are given for defined threats. Note that an installation class need not have profiles for all possi-
ble threats. For example, performance limitations might indicate that SSM accuracy precludes use
against bridges. The exclusion or inclusion of particular threat installation profiles can be used to
control allocations.

d. Targets. This file lists the name, installation class, and location of all targets to be
considered. Most targets are fixed installations. Since continuous targets such as roads and pipe-
lines do not have discrete saturation levels, the user can designate those targets for continuous
attack (i.e., they cannot be saturated). Likewise, the user can define mobile military targets that,
if attacked, may not generate engineer repair requirements, but will divert sorties from other
missions.

e. Scenario. While some explicit scenario information is built into the threat file (e.g.,
attrition), the other controlling data are entered at the beginning of program execution. The
parameters that decide how the model will operate are information such as duration of simulation,
frequency of reports, countries or organizations to be reported, suppression frequencies, and
names of input files.

8. OUTPUT. DAMOC provides a full range of useful reports and messages. More defini-
tive descriptions appear in Annex B.

:11 "

a. Data Summaries. At the beginning of DAMOC's execution the program reads
threat base, threat, damage profile, and target files. In addition to converting data elements into
internal textual and numeric formats, the program checks data validity: threat groups cannot be
assigned to non-existent bases, targets must have a valid installation type, damage profiles within a
notional installation must be consistent across facility sizes, etc. In constructing an application,
the user should review the data summaries to assure that intended entries are accepted.

(1) Threat. Threat information is entered in the base and threat asset files. Base
files identify valid threat locations from which attacks originate. Although the user can enter a
base's full name, the identifier used internal to DAMOC is the code identification. It is this code
that is checked against entries found on the threat asset files. If a nonexistent base is encoun-
tered, the asset entry is rejected.

(2) Damage Profiles. The installation profiles, derived from the detailed damage
model (or models), are read and assembled into a damage profile table. While building the
reference table, DAMOC culls all the category codes encoin !.ered and lists them. It also summa-
rizes the damage table by providing the notional installations that have been encountered; the
threat types that can be used against them; the number of catcodes comprising each profile; and
the size of the associated threat packages. It also reports when an internal check on the data fails
from either a facility inventory inconsistency or an unknown threat type.

(3) Targets. Target installations are reviewed against the profiles found in the
damage table. A target's reference type must correspond to a defined notional installation type.
Country codes are not checked--the user must define the country field depending on the
problem's demands.

b. Facility Damage Summaries. Periodically during DAMOC's execution a summary
of damage for all selected installations is printed. It shows the extent of each facility in the
installation subset and the associated damage, hits, and craters that occurred during the period.
The user may designate a subset of installations for the summary reports (this subset will also
decide which installations will appear in the installation summaries). The designation uses the
country codes found in the target file. The reporting depends on how the codes were initially
defined and suggests that some thought should be given to their initial definition. While the
obvious use is to designate nationality, one could also use it to discriminate among U.S. facilities
in different nations, services, or major commands (e.g., "U" = U.S. installations; "T" = Turkish
installations; but 't' = U.S. installations in Turkey). Note that the facility totals represent only
those found in installations in the report set. It should also be emphasized that the report set has
nothing to do with targeting. Given the same threat and target input, sorties allocation will be
identical, regardless of the report selection.

c. Installation Summaries. The facility summaries are convenient to get a general idea
of attack intensity. By itself, however, it would be of little use to engineer planners. The individ-
ual installations provide the planner with an idea of what, when, and where engineers will be
needed. The report breaks out facility damage, facility hits, and critical crater percentages by time
periods. It also shows when attacks were made. The damage can be used in engineer workload
models to assess the adequacy of engineer capability.

d. Sortie Log. A log file is created by DAMOC to record all sortie allocations, unused
assets, and threat changes (i.e., redeployments) during the scenario. This file is only intended to
enable the user to confirm that sorties and movements occurred as expected.

12

9. PROGRAM DESIGN. This section is a quick overview of the damage allocation
(DAMOC) program. The success of DAMOC 6 , with respect to extensibility and execution

0 speed, is largely attributable to its design. It uses a software technique called object-oriented pro-
gramming (OOP)."7 This enhances the ability of the modeler to decompose a problem. In more
traditional program languages (e.g., FORTRAN) the programmer must represent the model using
only a few data structures (integer, real, and alphanumeric variables). OOP languages enable the
programmer to define additional structures, which can be problem specific. In DAMOC there are
types for installations and profiles, as well as types for integers and strings. Studied decisions on

0 how to define object types will greatly influence how well a problem can be modeled. The inter-
ested reader is referred to Annex C where the individual program elements are described more
fully.

a. Object Hierarchy. One feature of OOP enables the programmer to build or extend
previously defined objects. DAMOC's general structure has three layers. The first layer defines

0 data structuring classes that are used extensively by other objet s in the model. The middle, and
by far the largest, layer contains the object classes that definc the methods and elements that
comprise the threat-installation-damage context. The third layer is the main program that uses
the object structure to simulate theater damage results. Figure 2 shows this stratification.

0 b. Unit SIMSETx. One of the benefits of OOP is the memory utilization derived from
tighter control over data structuring. Rather than defining large arrays (which either constrain
the number of entries or are purposely too large) to retain information, as FORTRAN would
require, the programmer can use objects to request only as much memory as needed, as well as to
encapsulate data. When an object is dynamically created, a way must be preserved to reference
or "point" to it, otherwise the program has no way to make use of it. One device used extensively

* in DAMOC is the two-way list. Such lists are realized in the model by employing derived types of
HEAD and LINK objects. First, the list must be created (new HEAD), and then objects can be
added to the list (LINKinto(HEAD)). Various list functions are defined for both HEAD and
LINK objects (and consequently for objects derived from them). Such methods designate the first
or last object in the ist; indicate whether the list has any objects, or is empty; enable an object to

0 be put in, or taken out of, a list; and count how many items are currently in the list. When, for
example, a new installation is created (defined as a derived object of LINK), it is placed in an area
object (defined as a derived object of HEAD). The program can then search through area to
access that installation. This list device is a common structure in OOP languages.18

c. Unit COMMZ: Object Classes. The structure of DAMOC can be viewed as a
* collection of different objects that have certain attibutes and procedures. Separately, the objects

should represent a reasonable decomposition of the problem environment. Together, they
should provide a substrate upon which an application can be built. The attributes describe the
state of the object, and the procedures define how interactions between ot among objects occur.

16 Compared to some other possible approaches, DAMOC was quite effiient. Initially, ESC contemplated using a
spreadshcet.based methodology. The danger of using spreadsheets on the ,vrong problem was dramatically illustrated. I hat
approach was marked by inflexibility, constant human attention, mushrooming storage demands, and completion times
measured in days, possibly weeks. DAMOC did it all by using a fraction of the storage needs, by reducing data to
manageable levels by eliminating ncedlcss deviations, by requiring little more than a few cata parameters from the user, and
by executing in seconds on the very same machine.

17 DAMOC was written in TI.JI130 PASCAL 5.5, a dialect of PASCAl. that incorporates true object-oriented f. 1,:ability.

'8 See explanation of CLASS SIMSET in Itroduction to Sitmld 67, Gunther Lamprecht (Friedr. Vieweg & Sohn, 1983).

13

4"

-SIMSETx

rS
LINKAGE

LINK HEAD

-COMNZ
I I I I I

POINT FACILDAM NOTNLINST CATCODE THREATS CUMATKSI0
INSTALLATION

I I I I I
PLACES AREA PROFILE CATCODELIST DAMAGE THREATLIST

IN PROGRAM

MAIN PROGRAM

Figure 2. OBJECT CLASS HIERARCHY OF DAMOC

d. Main Program. After defining the elements, or objects, that comprise the theater
damage environment, their behaviors must be orchestrated. The main program initiates the
creation of the scenario components, decides what threat assets are available and where they
should attack, and collects data for or initiates the various reports.

10. MODELS EXECUTION. The damage methodology is a two-stage process. Before
DAMOC is run, the user must decide what damage profiles are required. If existing profiles are
sufficient, there may be no need to generate new profiles--it may be enough to merely create a
few special installations. (While consistency may weigh heavily on a decision, it is not necessary
to use the same detailed damage model for all the profiles.) After the needed profiles have been
revised or created, the user must assemble the necessary threat and target information required by
the damage allocation model. Below are some general comments about execution characteristics
of NAASP and DAMOC.

a. NAASP. Being PC-based is the greatest advantage of the Navy damage model.
Having ready access to the program allows a user to explore input variations and their affect on
output. Th. only special hardware requirement is the need for a math co-processor.

14

(1) Operation. The NAASP has a menu-driven data preparation module which
provides an interactive session to build the various input files (target, weapons, damage, plot, and
attack). Different portions of the model can be run separately, or all the input can be combined
to run an entire case.

(2) Environment. The NAASP contains support logic for certain optional hard-
ware peripherals that facilitate using the system. Unfortunately, ESC did not have one of these
items--a compatible digitizer. This meant that much of the site plans had to be manually en-
tercd--a frustrating task.

b. DAMOC. Like the NAASP, DAMOC was designed to run on any PC/AT or
PC/AT-compatible. No special hardware requirements are necessary to run the program. The
only caution is in the area of security. Because threat and target input are likely drawn from
classified sources, local security limitations would have to control the execution environment.
Annex A describes DAMOC input in detail. Some of the operational characteristics of interest to
potential users are listed below.

(1) Interactive. The program is designed to be run interactively. A series of
questions are posed to which the user must respond before the program will go forward. In the
interactive mode, all output goes to the screen, except for threat dispositions written to the
SORTIE.LOG file.

(2) DOS Redirection. While it may be useful to run DAMOC interactively to see
how things proceed or what errors might be uncovered in the input, the amount of information
that appears on the screen will overwhelm a user. To capture this information, one can use
DOS's file redirection feature. The normal query-response cycle can be bypassed by entering the
following command:

DAMOC < control.file > output.file

The control.file contains responses to the questions posed during interactive processing. The
output.file will receive all the data that would otherwise go to the screen. Note that it is not
unusual for output files to require 300, 500, or as much as 1,000 kilobytes of storage (the number
of installations is the controlling factor). The user should keep this in mind when designating
destination tiles (a hard drive or Bernoulli-like removable disk may be necessary).

(3) Specifications. DAMOC currently runs comfortably on a standard AT machine
with 640 kilobytes of random access memory. Execution speed is a function of scenario length,
report selections, number of threat assets, and number of targets. Run times on 80286-based
machines have ranged from a few minutes to several hours. A test run on an 80386-based PC-
compatible saw immediate three-fold execution time improvements. The number of lines of code
for the three program units in DAMOC (SIMSETx, COMMZ, and DAMOC) together total less
than 1800 lines of code. The memory requirements for the associated symbolic files are less than
60 kilobytes. The executable element (DAMOC.EXE) is less than 40 kilobytes. This last value
should not be misinterpreted; the executable size refers only to code. The actual memory re-
quirements is a function of the input data. ESC has run scenarios that use close to 400 kilobytes
of random access memory (RAM) for data. Even at that, the model runs comfortably within the
640-kilobyte DOS address space.

15

(4) Limitations. ESC has tried to make the model as unrestrictive as possible.
Nonetheless, there are several internal parameters of which a user should be aware:

- there are only 4 threat types--fighter, bomber, SOF, and SSM 0
- 3 changes in threat rates or redeployments can be made
- 75 facility categories can be tracked
- scenarios can be up to 180 days long
- the number of time periods must be less than or equal to 10 (i.e.,

length-of scenario/length of period ! 10) 5

Increasing any of these parameters, except the threat types, requires nothing more than changing
several internal dimension statements. Changes to threat types have much larger implications and
necessarily can be accomplished only after making substantial changes to the model.

1

S

S

S

S

16

IV. SUMMARY

11. FUTURE ENIIANCEMENTS. As ESC applies its damage methodology, modifications
and improvements continue to be made, particularly to DAMOC. One of the advantages of the
allocation model is its receptiveness to change. It has proven to be highly extensible. Based on
discussions and experience, ESC foresees the following modifications being made to refine the
allocation model and further enhance its utility.

a. Installation Modularization. Presently the model deals with 27 classes of notional
installations. For representational and targeting robustness, it might be desirable to visualize
installations as groups of sub-installations. An air base might have runway: petroleum, oils, and
lubricants (POL); maintenance; and other facility subsets. By supporting a certain amount of
modularization, DAMOC could adopt more selective targeting than the currently-used installation
priorities. This approach might be more imperative if smart munitions were included and used
against facilities rather than installations.

b. Threat Types. The use of only four threat types may be restrictive, especially in
reducing fighters and bombers to common units. Aircraft are currently standardized on one type
of munition. While this simplifies the process and reduces the number of NAASP cases, it would
be more realistic to consider several munition types (conventional and smart) and the carriers that
can or cannot deliver them. Although this would require a few internal changes to DAMOC, the
real impact would be on the analyst having to make that many more preparatory runs of the
detailed damage model to develop the various attack package-facility damage sub-tables.

c. Reconstitution (implied Engineer Capability). DAMOC currently has a global
switch that resets damage. 19 It was included under the premise that U.S. and indigenous engi-
neer capability might be able to reconstitute (i.e., repair all damage) an installation. This is
different in degree from the need for suppression that contemplates selective repair (in particular
runway craters). The all-or- nothing impact of "toggling" reconstitution across all installations
seems too broad in retrospect. Clearly, it would be more desirable to selectively reconstitute
installations based on knowledge of local engineer capability and the time required to effect
repairs. It would be relatively easy to modify DAMOC so that reconstitution can occur at desig-
nated installations. However, it is difficult to determine when and where reconstitution should
occur because there is no explicit engineer representation in DAMOC.

d. Threat Ordering. As noted in paragraph 6c, the user should be cognizant of the
sequential nature of sortie allocation. It would be an easy task to have DAMOC order the threat
according to range, with the option of disabling that feature if theater geometry reduces its
importance. (If necessary, an "assignment problem" algorithm could conceivably be incorporated.
This would probably have, however, major execution and memory implications.)

19 See Annex A discussion of Run Control File clenents.

17

e. CESI(;/JEIES Linkage. ESC's war damage approach is an adjunct to theater
planning. Calculating where, when, and how much damage occurs is usually preliminary to deter-
mining if planned engineer capability is adequate. Since capability must also be applied to new S
construction requirements, damage and construction should be addressed together. One obvious
way to do this is to use DAMOC results as input to the CESPG (or its eventual successor--the
Joint Engineer Planning and Execution System (JEPES)). DAMOC could be modified to pro-
duce damage information ;n a mutually compatible format.

12. ASSESSMENT. ESC's damage methodology espouses a pragmatic approach to the
insoluble problem of predicting war damage. Its primary purpose is to provide engineer and
military planners with a reasonable estimate of potential theater-wide war damage. The estimate
couples output from facility damage simulations with scenario-dependent factors--threat capability,
target priorities, and campaign factors. As such, the approach extends rather than replaces
current damage models by framing the amount of damage within the context of theater threat S
capability. Other attributes of DAMOC--its modest size and its PC compatible implementation--
make it highly portable. To encourage potential users to evaluate and hopefully utilize the
methodology, ESC will provide, upon request, a distribution disk containing an executable version
of the allocation program (DAMOC.EXE), program files, and sample data. This is enough to
make a test run and observe the execution time and ease of use. To obtain this disk, contact the
Office of the Director, U.S. Army Engineer Studies Center, Casey Building 2594, Fort Belvoir, W
Virginia 22060-5583; phone number (703) 355-2373. (NOTE: For a copy of a detailed damage
model such as the NAASP, a user would have to contact the organization responsible for its
development.) Overall, the accessibility of the system, the separation of facility damage and
targeting, and the relative ease of use enable planners to adapt to varying amounts of available
information to estimate damage and quickly explore alternative scenarios or hypotheses.

0

LAST PAGE OF MAIN PAPER

18 0

S

S

S

S

S

ANNEX A

DAMOC INPUT

S

S

S

S

S

S

ANNEX A

DAMOC INPUT

ParaLraph PaE

1 PURPOSE ... 1
2 SCOPE ... 1
3 DESCRIPTIONS .. 2

Threat Bases File .. 2
Threat File ... 3
Target File ... 6
Damage Profile File .. 8
Run Control File .. 11

4 CHANGES .. 13

Figure

A-1 THREAT BASES FILE EXAMPLE 2
A-2 DEFINITIONS OF THREAT BASES FILE INPUT 3
A-3 THREAT FILE EXAMPLE .. 4
A-4 DEFINITIONS OF THREAT FILE INPUT (RECORD 1) 5
A-5 DEFINITIONS OF THREAT FILE INPUT (RECORD 2) 6
A-6 TARGET FILE EXAMPLE .. 7
A-7 DEFINITION OF TARGET FILE INPUT 8
A-8 DAMAGE PROFILE FILE EXAMPLE 9
A-9 DEFINITIONS OF DAMAGE PROFILE FILE INPUT (RECORD 1) 10
A-10 DEFINITIONS OF DAMAGE PROFILE FILE INPUT (RECORD 2) II
A-Il RUN CONTROL FILE EXAMPLE 12

1. PURPOSE. This annex describes the input file formats and data used by the Damage
Allocation Model (DAMOC).

2. SCOPE. The annex is limited to input discussions for DAMOC. Insofar as DAMOC is a
data-driven model, this might also be viewed as a user's guide. The companion to this annex
would be a description of input for whatever detailed damage model is used, if additions or
alternative damage profiles are necessary. For such information, the user should consult the
applicable user's manual.

A-I

3. DESCRIPTIONS. The scheme used to define the data uses both examples and textual
descriptions. First an extract or portion of the file is shown. That is followed by a field format
definition showing character and field positions. (NOTE: Character or string entries should be
left justified in their subfields because leading blanks are not stripped out.) Finally a brief de-
scription of individual datum is provided along with desiderata that should be heeded while
constructing the files.'

a. Threat Bases File. This file defines the locations from which various attacking
forces originate and fixes the location (latitude and longitude) at which the attack starts. It is
used to calculate whether particular attacking types are within range of specified targets. This file
can also be used to define locations to which threat assets will withdraw or forward deploy.

(1) Formats. Figure A-i below is an example of the Threat Bases file and the file
format.

ExampLe: Threat Bases FiLe

airbase number 1 baseO lO0000ON 0500000E
airbase number 5 base5 150000N 0600000E
ALpha base2 11000ON 0520000E
Beta base3 120000N 0540000E
IV Corps base4 130000N 0560900E
CapitaL base6 140000N 0585000E
Upsi Lon basel 150000N 0580200E

Format: Threat Bases File

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1I I
Base Name Base Code Latitude Longitude

Figure A-1. THREAT BASES FILE EXAMPLE

(2) Explanation. Figure A-2 provides the definitions of Threat Bases file input.
Several things about the Threat Bases file are worthy of mention. First, the model does consider
hemisphere; therefore, latitude V must equal N or S and longitude H must equal E or W. Second,
although the base code is user-defined, a standard code, such as geographic location (GEOLOC),
is recommended where possible. Third, by purposely defining bases well beyond the range of
threat systems, one can, by using the redeployment entries for threat systems, simulate movement
into and out of the theater of operations.

File sizes are not restricted. There is no specific limit on the number of records contained in the data files. To do this,
I)AMOC exploits the dynamic memory facility of PASCAl. 5.5 (objects are dynamically allocated on the heap rather than
on the stack). While ESC has defined some rather large scenarios (120 days; 15 bases; 20 threat systems; 500 targets), the
heap has not come close to being used up. It is not, however, inexhaustible, and in the event that it is exceeded, the system
will lock up.

A-2

Input Item Start End Description
Col Col

Base Name 1 20 Name of location from which threat

attacks will originate

Base Code 25 29 Code (: 5 characters) assigned to
threat base location (used for
threat placement and moves)

Latitude 41 47 Latitude expressed°in: ddmmssV

Longitude 51 58 Longitude expressed in: dddmmssH

Figure A-2. DEFINITIONS OF THREAT BASES FILE INPUT

b. Threat File. This file provides the scenario dependent description of how the threat
will operate against the targets. At designated times, groups can be moved from base to base to
correspond to scenario-based movements. Operational, casualty, or expenditure rates can also be
designated and can be made both group and time specific.

(1) Format. Examples of a Threat file and the file formats are found in
Figure A-3 on the next page.

A-3

ExampLe: Threat FiLe "

FLOGGERS FIGHTER baseO 1281 50 20 6basel <-type I record
1 .90 .10 <-type 2 record

BADGERS BOMBER base3 750 20 10 3base9
5 1.0 .10 10 .70 .20

SPETSNAZ DIV SOF baseO 150 20 0
10 .10 .10

SPETSNAZ CORPS SOF base4 300 20 0
5 .15 .15

SCUD SSM base6 400 50 0 15baseO
12 1. .20

Format: Threat FiLe [record type 1]

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Threat Description Threat Start Rng Amt Amt Move Base Move Base Move Base
Class Base Beg Min dayl day2 day3

Forat: Threat FiLe (record type 23

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

day rate rate day rate rate day rate rate
1 1/1 2/1 2 1/2 2/2 3 1/3 2/3

day #d:= day at which rate change occurs
rate type/#d := for planes rate 1 = operational ready rate

rate 2 = casuaLty/Loss rates
for SSM rate I = avaiLabiLity (0 or 100)

rate 2 = usage rate
for SOF rate I = pre target attrition

rate 2 = recovery Losses

NOTE: The days associated with movement and rate changes need not be the same.

Figure A-3. THREAT FILE EXAMPLE

(2) Explanation. Two things should be considered when assembling the threat
system file. First, threat assets are allocated each day according to the order in which they were
initially entered. Second, beginning amounts may not be the actual number of available aircraft
or units. In response to the former, the user should probably put short-range systems at the
beginning of the file and long-range assets near the end of the file. In regard to beginning
amounts, the important thing to remember about threat types (e.g., FIGHTER, SOF) is that they
must be counted in terms of standard units. The model has no internal knowledge of threat
organization or configuration. If SOF teams simulated in the detailed damage model (e.g., the
NAASP) were 20-man teams, than a SPETSNAZ Brigade would be defined by the number of
such teams it controlled. The units can also vary within a platform: one FLOGGER might have
a normal sortie capability of 2 units, but a long-range "B" version (range increases because exter-
nal tanks are used) would only be worth "1." Also, there is no implicit correlation between
"move" and "change" days. These values need not correspond to each other--they are to simulate

A-4

events and conditions in the controlling scenario. It should be emphasized, however, that there
are no default rates or presumption of availability on day 1. Consequently, there must be an
entry in "change day 1" and associated rrte. (NOTE: "change day 1" can indicate any day in the
scenario; it should not be interpreted a- meaning day=1.) Definitions of Threat File input for
records 1 and 2 are found in Figures A-4 and A-5 respectively.

F Input Item Start End Description
Col Col

Threat Description 1 20 Name of associated threat group. It
might indicate weapon type and
organization: 5th SPETSNAZ Bde or
Fencers/Ist Air Wing

Threat Type 21 30 Type of threat asset: FIGHTER, SOF,

BOMBER, or SSM

Base (starting) 31 35 Starting base

Range 36 40 Range of threat system (nautical
miles)

Beginning Amount 41 45 Starting number of assets. (Note
that this is not necessarily a
count. Plane sorties must be in
notional sortie terms; SOF counts
should be multiples of nominal
group size.)

Minimum Amount 46 50 Lowest level that asset can reach.
(replacement pipeline)

Move day #1 51 55 Day on which 1st asset redeployment
occurs from starting base to next
location

Base 56 60 Base code of new location

Move day #2 61 65 (see above)

Base 66 70 (see above)

Move day #3 71 75 (see above)

Base 76 80 (see above)

Figure A-4. DEFINITIONS OF THREAT FILE INPUT (RECORD 1)

A-5

Input Item Start End Description
Col Col

Change Day 1 11 15 Day at which initial rates are active
(if > I then asset considered ini-
tially unavailable)

Rate#1 for day 1 16 20 Value of first rate#1. (NOTE: Rate#1
is interpreted differently for
each threat type: for FIGHTER
and BOMBER, it is the operational
readiness rate (decimal); for SOF,
it is the before target attrition
rate; for SSM, it is used as a
switch--if > 0, then available;
otherwise assumed not available.)

Rate#2 for day 1 21 25 Value of first rate#2. (NOTE: Rate#2
has different meanings for each
threat type: for FIGHTER and
BOMBER, it is an attrition rate;
for SOF, it is the post-attack
loss rate; for SSM, it is usage
and might be a function of
launchers or doctrine.)

Change day 2 26 30 (see change day explanation above)

Rate#1 for day 2 31 35 (see rate#1 explanation above)

Rate#2 for day 2 36 40 (see rate#2 explanation above)

Change day 3 41 45 (see change day explanation above)

Rate#1 for day 3 46 50 (see rate#1 explanation above)

Rate#2 for day 3 51 55 (see rate#2 explanation above)

Figure A-5. DEFINITIONS OF THREAT FILE INPUT (RECORD 2)

c. Target File. This file contains all the targets that will be considered in the scenario.
At present, the target priority is established preemptively by the ordering in the file. The attacker
will try to "saturate" (i.e., meet the primary attack quota) target (n) before beginning to attack
target (11+1).

A-6

(1) Format. An example of the Target file and the file format is found in
Figure A-6 below.

Example: Target FiLe

NUCAF #1 U NUCAF 20000N 0600000E
NUCSTOR #2 U NUCSTOR 200000N 0600000E
COB1 U COB 200000N 0600000E
COB2 U COB 20000 N 0600000E
ALpha City U * SNPORT 200000N 0600DOOE
NetropoLis U LGPORT 200000N 0600000E
COB3 U COB 200000N 0600000E
COMMO U TEL FX 200000N 0600000E
COMM02 (XX Corps) U TEL FX 200000N 0600000E
MSR #1 (grid a) T * HWY 200000N 0600000E
MSR #1 (grid b) T * PORT 20300N 0630000E
ANO Site 1 A AMNO 200000N 0600000E
PORT3 A PORT 20000ON 06000OE

Format: Target FiLe

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

5II I i
Target Name InstaLLation Lat Long

Nation/group Code

Saturation FLag

Figure A-6. TARGET FILE EXAMPLE

(2) Explanation. Figure A-7 contains the definitions of the Target file input. One
consideration to keep in mind is the location. The model does not know if the latitude and
longitude are correct, but it assumes they are. The user should ensure that coordinate entries fall
within known north-south, east-west ranges. While this might be somewhat tedious for a large
number of targets, it is necessary because DAMOC accepts "out-of-range" conditions, whether
real or inadvertent.

A-7

Input Item Start End Description
Col Col

Target Name 1 20 Full name of target installation

Nation/group 25 25 Installation group identification.
Could be nationality ('U' - United
States); could be organizational
('4' = 4th ASG or '7' = VII Corps);
or it could identify foreign bases
('T' = Turkish, but 't' = United
States in Turkey). The group code
is presently used only to select
report scope.

Saturation Flag 27 27 This overrides the primary attack
axiom. Normally when an installa-
tion receives its primary attack
quota, it is no longer attacked
(except for suppression and recon-
stitution situations). For some
targets (roads, railroads, pipe-
lines) this is unrealistic. By
setting this flag to '*' a target
will continue to be hit by each
successive threat group.

Installation Code 30 39 This code indicates to which class
of notional installations this
target belongs.

Latitude 50 56 Latitude of target in ddmmssH

Longitude 60 67 Longitude of target in dddmmssV

Figure A-7. DEFINITION OF TARGET FILE INPUT

d. Damage Profile File. The Damage Allocation Model does not directly calculate
damage. It actually apportions attackers according to target priority and nominal sortie require-
ments necessary to achieve predetermined damage levels. Damage is derived from the damage
profiles developed during the first phase of the methodology. In its studies using DAMOC, ESC
has relied on the Navy Air Attack Simulation Program (NAASP) as the detailed damage model.
The Damage Profile file represents the information extracted from the NAASP 2.

2 Thcre are secvral models that could conceivably be used: NAASP, AAP, TSARINA. ESC opted for the NAASP
bcrausc of its I'C-availability. What DAMOC needs from a damage model such as NAASP1 is a damagc template which
relates damage to an appropriate level of standardi7ed attacks.

A-8

(1) Format. Figure A-8 below is an example of a Damage Profile file and the file
formats.

ExampLe: Damage Profite FiLe

*NCAF FIGHTER 30 12 <-type I record
RUNWAY 111A 11200 0.00 15.14 6.5 <-type 2 record
TAX IWAY 112A 22400 0.00 30.08 14.38
APRON 113A 5490000 0.00 6.82 0
RAILROAD 860A 12000 0.00 3.16 0
10K POL TANKS (BBL) 411E 50000 27.20 4.88 0
AFCT MAINT FAC 211F 450000 100.00 17.16 0
WTR STOR FAC (GAL) 841C 100000 100.00 3.72 0

Format: Dacae ProfiLe FiLe [record type 1]

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

InstalLation Code Threat Suppression Attacks
(NotionaL Type) Type Primary Attacks

if '* then new ProfiLe beginning

Format: Damage Profite FiLe [record type 23

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I I I I I I
FaciLity Description JCS Amount % Hits/ Critical

Catcode onhand damage craters craters

Figure A-8. DAMAGE PROFILE FILE EXAMPLE

(2) Explanation. An important element of a damage profile is ,he facility set. It
is important that there be no misconception about the facility entries. They need not represent
all the facilities presumed to exist at a notional installation, only the ones that are damaged in a
postulated attack. Undamaged facilities could be added, but would be gratuitous. Therefore, the
minimum facility list for a notional installation class contains all facility types that have been dam-
aged. These facilities need not be the same for different attackers. One would not expect that a
SPETSNAZ team would have the same targets as a FIGHTER bomber. The program retains
dissimilar facility lists within a notional installation. There is an internal check--if there are
multiple profiles (i.e., more than one attacker type for a notional installation), then the onhand
amounts for common facilities must be the same. Internally, DAMOC uses percentages. It
combines percentages of threat types. Thus, it makes a difference if a FIGHTER's 50% damage
is for 10,000 sq. ft. of 21 IF maintenance facilities, while an SOF's 30% damage is for only 500 sq.
ft. of the same facility. (NOTE: When the model identifies such inconsistencies, it does not
completely reject the information. It does presume, however, that the first encountered amount is
true. The user, therefore, is advised to review the "DAMAGE TEMPLATE" report where such
inconsistencies are reported.) Definitions of Damage Profile file input for Records I and 2 are
found in Figures A-9 and A-10 respectively.

A-9

Input Item Start End Description
Col Col

Record flag 1 I Since there can be a variable number
of associated facility records in
a profile set, a '*' in column 1
identifies the record as the start
of a new installation-threat
system profile (e.g., "COB").

Installation code 2 11 The code used to identify the class
of notional installations

Threat type 26 35 Indicates which threat asset class
(FIGHTER, etc.) profile is being
defined for the notional class

Primary attacks 42 45 The number of attacks necessary to
achieve threshold damage levels
(derived from detailed damage
model results)

Suppression attacks 47 50 For those installation classes
that have runways and piers,
suppression attacks can be
designated. These are the
portion of the primary attacks
directed against the specific
facilities.

Figure A-9. DEFINITIONS OF DAMAGE PROFILE FILE INPUT (RECORD 1)

A-10

Input Item Start End Description
Col C.

Facility name 13 22 A descriptive name of the facility
in the profile

JCS Catcode 26 29 The code associated with the facility

Amount onhand 31 40 The total amount (sq ft, bbls, lf,
etc.) of this facility class
subject to damage

Percent damaged 45 50 The average Z of the onhand amount
that is damaged when a full
primary attack is made on the
notional installation

Hits/craters 45 50 The average hits or craters on the
onhand facilities resulting from
a primary attack

Critical craters 64 70 The average craters on runways
(or taxiways in some cases) that
must be repaired to attain a
minimum operational strip as
defined for the detailed damage
model

Figure A-10. DEFINITIONS OF DAMAGE PROFILE FILE INPUT (RECORD 2)

e. Run Control File. The normal execution of the Damage Model begins with the user
responding to questions. The responses set some key variables defining scenario and model
parameters. While not onerous, there may be reasons why one would prefer to have the model
obtain this information from a file rather than through keyboard entry. Under DOS this is easily
done using redirection: DAMOC.EXE < RunCntrl.Fyl. By the same token, redirection can be
used to direct output from the screen (the default) to a designated file: DAMOC.EXE > Out-
put.Fyl. Moreover, the operations can be concatenated: DAMOC.EXE < RunCntrl.Fyl > Out-
put.Fyl. This section portrays the form and contents of this alternative input.

A-I

(1) Format. Figure A-11 below is an example of a Run Control file.

Example: Run Control File

30 number of days in scenario
ABC countries in reports (summary and installation)*
5 reports every 5 days
5 3 double sortie & suppression periods
4 5 SOF & SSM sortie periods
10 1 reconstitution: cycle days & times to do it
bases.t enemy bases file name
threat.t the threat file
damtable notional damage arrays
targets.t installation list

* A country code (a single alphanumeric character) is user defined. There is one
requirement--the code must correspond to the convention used in the Target
file. Also, there are two reserved characters: an "*" indicates that all
countries are to be reported; an '!" indicates that installation reports are
not required.

Figure A-1l. RUN CONTROL FILE EXAMPLE

(2) Explanation. TURBO PASCAL allows numerical free formatting from the
input device, with a space(s) acting as a delimiter. Textual input must, however, be confined to a
specified field and length. The example in Figure A-11 above shows the number of data and
file.name entries that are expected. The comments that appear to the right are ignored. The
entries in this file define global variables and identify appropriate data files. Comments regarding
each entry appear below.

(a) Scenario Days. This entry defines the number of days in the scenario
(limitation: days < 180).

(b) Country Reports. This entry defines which target damage information will
be portrayed in rollup and installation reports (see Annex B). By choosing different subsets of
country/group identifiers, reports are limited to only those qualifying installations. However, the
report mask has no affect on the simulation itself. The model does not attack targets based on
their country/group (" = report all installations; "!" = summary reports only, no installations).

(c) Report Frequency. The summary reports are produced at set intervals, or
cycles. If, in a 50-day scenario, one wanted summary reports every other day for the first 10 days
and every 10th day thereafter, one would run the model twice: the first run would set report
frequency to 2 days and scenario length to 10 days; the second would set frequency to 10 days and
length to 50 days. The results will be consistent because the reports cycles have nothing to do
with targeting (limitation: number of summary report periods 10).

A-12

(d) Double Sories. The model will permit double sorties for aircraft during
the first days of the scenario. This is to simulate the likely "surge" capability of the attackers
during that period. This entry indicates the number of "surge" days (limitation: none, days = 0, 1,

0 2, 3,...).

(e) Suppression Periods. Suppression attacks are defined for certain installa-
tion damage profiles. Their intent is to re-target certain facility types (pavement and piers) that
can be repaired, thus restoring, to some degree, installation operability. This entry determines
how many days after receiving its primary quota an installation can expect suppression attacks.
Such attacks will continue until the suppression quota is reached, at which time the installation's
suppression clock will be reset.

(f) SOF and SSM Periods. Since SOF and SSM assets are limited to some
degree by delivery means, the user can husband these assets by setting use cycles. For example,
the user might indicate that SOF will only be used every 4th day and SSM will only be used every
5th day.

(g) Reconctitution. One feature in the model allows a user to reset all
damage counters. This theoretically simulates repair. Currently, it can only be done globally--
damage is reset at all installations at the same time. If reconstitution is not wanted, simply set the
cycle to "length-of-scenario + 1."

(h) File Names. Self explanatory.

4. CHANGES. The damage methodology has been used by ESC in three assessment stud-
ies. The first study created the requirement for DAMOC's existence; the second study identified
other desirable features to be added to the model (e.g., ranging); the third study recognized the
desirability of combining notional and actual target profiles. The formats and data defined in this
annex reflect current needs. From experience, however, one might anticipate that the model and
ESC's overall damage methodology will continue to evolve. This will doubtlessly require associat-
ed changes to input and formats.

A-13

Blank Page

LAST PAGE OF ANNEX A

A-14

0

0

0

ANNEX B

* OUTPUT DESCRIPTIONS

0

0

0

0

0

ANNEX B

OUTPUT DESCRIPTIONS

Paragrmah Ege

1 PURPOSE ... 2
2 SCOPE ... 2
3 OUTPUT DESCRIPTIONS ... 2

Input Verification .. 2
Scenario Queries .. 2
Threat Bases .. 3
Threat Systems .. 3
Damage Profiles ... 3
Targets .. 7

Reults .. 7
Facility Rollups .. 7
Installation Summaries .. 8
Installation Class Attacks .. 10
Sortie Summaries .. 11

Execution Monitoring ... 12
Machine Performance ... 12
Event Log ... 13

Figure

B-1 SCENARIO DEFINITION ... 2
B-2 THREAT BASES SUMMARY .. 3
B-3 THREAT SYSTEMS SUMMARY 3
B-4 NOTIONAL INSTALLATION CREATION RECORD 4
B-5 FACILITY/CATCODE MASTER LIST 5
B-6 DAMAGE PROFILE SUMMARY 6
B-7 TARGET INSTALLATION SUMMARY 7
B-8 FACILITY DAMAGE ROLLUP BY PERIOD 8
B-9 INSTALLATION ATTACK SUMMARY BY PERIOD 9
B-10 INSTALLATION FACILITY DAMAGE SUMMARY BY PERIOD 10
B-11 INSTALLATION CLASS ATTACK SUMMARY BY PERIOD 11
B-12 DAILY THREAT CLASS SORTIE SUMMARY 12
B-13 MODEL PERFORMANCE AND TIMING MESSAGES 12
B-14 SORTIE LOG FILE EXTRACT .. 14
B-15 SORTIE LOG FILE EXTRACT--LINE EXPLANATIONS 15

B-I

1. PURPOSE. This annex provides examples of the various reports produced by the Dam-
age Allocation Model (DAMOC).

2. SCOPE. Reports and other routine information described in this annex represent the
output produced by DAMOC. A review of this section will assist the user in interpreting output
from DAMOC. As similarly stated in the Scope of Annex A, however, no attempt is made here
to describe output from any damage model used in conjunction with DAMOC.

3. OUTPUT DESCRIPTIONS. Output in DAMOC can be categorized into three areas:
input verification, results, and execution monitoring.

a. Input Verification. With several interrelated input files, DAMOC attempts to
assure data consistency to the extent possible. Since the user is given the freedom to define 0
several fields (although standardized codes are desirable), the model is relegated to resolving
differences or omissions rather than judging correctness. It can't know when the user meant to
do something different. The user should, therefore, review the input verification section of the
output. This is especially important since the normal course is to reject questionable entries, but
not necessarily to terminate processing. Because the program does not consider inconsistencies to
be fatal errors, execution and results might look correct, even though threat or target data may
have been omitted. The various reports described below can assist the user in verifying content.

(1) Scenario Queries. When DAMOC is executed interactively (the default mode),
the program asks a series of questions to set various scenario parameters and identify data files to
be used (See Figure-B-i). For a fuller explanation of the desired responses, the user is referred
to Annex A's discussion of the Run Control file (the alternative to interactive processing).

Enter the number of days in the scenario -> 1
Select country codes (a "*" means all included)-->
Length of period (and report cycle) -->
Enter days of double sorties & suppression period-->
enter SOF & SSM frequencies ->
enter reconstitution period and number-->
enter filename of threat bases-->
enter filename of threat systems-->
enter filename of installation-attack profiles-->
enter filename of target installations -->

0

Figure B-1. SCENARIO DEFINITION

B-2

(2) Threat Bases. The first data to be read in is the Threat Base file. This estab-
lishes the air bases and other military installations where threat assets can be located.
Figure 11-2 shows an example of the list of bases produced by DAMOC. The base code is in
brackets and the x and y coordinates (originally expressed in latitude and longitude) is expressed
in radians.

....... attack bases defined

airbase number I [baseO] 0.17453 0.87266
airbase number 5 [base5] 0.26180 1.04720
airbase #2 [base2] 0.19199 0.90757
airbase sac [base3] 0.20944 0.94248
corps hq (base4] 0.22689 0.98000
fixed launch #1 [base6] 0.24435 1.02684
airbase forward [basel] 0.26180 1.01287

Figure B-2. THREAT BASES SUMMARY

(3) Threat Systems. When processing the Threat Systems file, two fields are
checked: the threat type (must be one of the four defined classes) and the threat base (must be a
base code defined in the Threat Bases file). In the example shown in Figure B-3, an entry is
rejected because DAMOC could not find one of the bases. After processing the data, a list of
accepted systems, along with their type and range, is reported.

- redeptoy error in BADGERS BOMBER base3 750 20 10 3base9
..threat rejected --BADGERS BOMBER base3 750 20 10 3base9

....... threat definition

FLOGGERS [FIGHTER 1 1281.0
FENCERS EFIGHTER 3 500.0
SPETSNAZ DIV ESOF 3 150.0
SPETSNAZ COR ESOF 3 300.0
S,.,) EssM 3 400.0

Figure B-3. TIllREAT SYSTEMS SUMMARY

(4) Damage Profiles. The damage profiles comprise the largest input file. While
the file is being processed, information is printed, followed by two reports that summarize facility
and profile-related information.

(a) Installation Log. Each time a new notional or actual installation is
encountered in the file, a message records its creation. Figure B-4 gives an example of that record.

B-3

/S

Instalprofile created for [NCAF 3
instalprofile created for [MOB]
instalprofile created for [COB
instalprofile created for [FLDCMP
instalprofile created for (TELFX 3
Instalprofile created for [TELFD 3
instalprofile created for [HAWK 3
instalprofile created for [LGPORT 1
Instalprofle created for [SMPORT 3
instalprofile created for (LGPOL 3
instalprofile created for [SMPOL 3
instalprofile created for [NATOPL 3
instalprofile created for (POLLD 3
instalprofile created for [AMMOFX]
instalprofile created for [AM IOFD]
Instalprofile created for [STORFX
instalprofile created for [STORFD
Instalprofile created for (CPOWER 3
instalprofile created for (FPOWER 3
instalprofile created for [WATER]
Instalprofile created for [WHIWAY 3
instalprofile created for [NHIWAY 3
instalprofile created for [HWYBRG 3
instalprofile created for [HWYTNL 3
Instalprofile created for [RR]
Instalprofile created for [RRBRG 3
instalprofile created for [RRTNL 3
instalprofile created for [RRYD]

Figure B-4. NOTIONAL INSTALLATION CREATION RECORD

(b) Facility List. Rather than redundantly retaining the full text name of
each facility within a profile, DAMOC creates a facility master list which is indexed by the catco-
de. During the processing of a profile, each facility entry is checked against the master list. If the
facility is not found, a new entry (facility name and catcode) is placed in the master list.
Figure B-5 shows the contents of the master list that was created after processing one version of
installation profiles. Ranking is by JCS catcode. Note that this list determines the entries and
order in the summary rollup reports.

B.4

#REFERENCE JCS CATCODE LIST:
(1) 111A ---- RUNWAY
(2) 111C ---- HELO LANDING PAD
(3) 112A ---- TAXIWAY
(4) 113A ---- APRON
(5) 123A ---- POL DISPENSING PT
(6) 125A ---- POL PIPELINE
(7) 125B ---- VALVE BOX (EA)
(8) 131A ---- ANTENNA (EA)
(9) 131B ---- COMMO EQUIP FLD
(10) 131D ---- TRANSMITTER BLDG
(11) 131E ---- TELEMETRY BLDG
(12) 133A ---- CONTROL TOWER
(13) 141D ---- AIRCRAFT SHLTR
(14) 151C ---- PIER
(15) 159C ---- WATER FRONT OPS
(16) 163A ---- LANDING DOCK
(17) 211F ---- AFCT MAINT FAC
(18) 216A ---- AMMO MAINT FAC
(19) 217A ---- COMMO MAINT FAC
(20) 219A ---- FAC MAINT SHOP
(21) 411A ---- FUEL TANK (BBL)
(22) 411B ---- POL BLADDERS (BBL)
(23) 411D ---- 3K POL TANKS (BBL)
(24) 411E ---- 10K POL TANKS (BBL)
(25) 411F ---- POL STOR YARD
(26) 421A ---- AMMO STORAGE FAC
(27) 422A ---- NUC AMMO STOR
(28) 425A ---- OPEN AMMO STORAGE
(29) 441A ---- WAREHOUSE (PORT)
(30) 442A ---- GP COVERED STOR
(31) 451A ---- GP OPEN STORAGE
(32) 452A ---- PORT OPEN STORAGE
(33) 610A ---- ADMIN FACILITY
(34) 811A ---- ELECT SUB-STAT
(35) 841C ---- WTR STOR FAC (GAL)
(36) 842A ---- PUMP UNIT (EA)
(37) 842B ---- WATER PIPELINE
(38) 851A ---- HIGHWAY WIDE
(39) 851B ---- TWO LANE ROAD
(40) 851C ---- ROAD BRIDGE .(SPANS)
(41) 860A ---- RAILROAD
(42) 860B ---- RAILROAD BRIDGE (SPANS)
(43) 860C ---- RAILROAD TUNNEL
(44) 860D ---- RAILROAD YARD
(45) 9999 ---- FLD CMD POST
(46) 999B ---- LOADER/TRANSPTR
(47) 999C ---- CRANE (EA)
(48) 999D ---- FLD CMD POST
(49) 999F ---- GENERATORS (KW)

Figure B-5. FACILITY/CATCODE MASTER LIST

B-5

(c) Damage Profile Summary. The final subreport for damage profiles is the
template summary. It summarizes individual installation threat damage profiles. The two num-
bers that appear in brackets after the threat name give the primary and suppression attack quotas.
That, in turn, is followed by the damaged facility count for the installation threat. During the
production of this summary, on-hand facility amounts are checked across profiles within a notional
installation. The example (Figure B-6) shows an inconsistency message for ammo storage (421A)
at a MOB. This tells the user that the on-hand conformity requirement was violated. DAMOC
builds one facility list for each notional installation and only one on-hand amount is kept. If on-
hand assets are not equal, it makes a large difference when calculating damage. For example, if
FIGHTERS and SOF each damage 50% of on-hand assets, but the SOF's presumed target was
two orders of magnitude smaller than the planes, then adding the percents together will result in
100% damage when the SOF contribution should have been 0.5% of the larger on-hand figure.
The program presumes the first on-hand amount is correct. Upon encountering such a message,
the user must resolve the discrepancy. Note also that in this example there is no profile for SOF
attacks against nuclear capable airfields (NCAFs). This may indicate a deliberate policy (without
a profile, DAMOC will not target SOF against NCAFs), or perhaps something was inadvertently
left out of the file or mislabeled.

#--DAMAGE TEMPLATE INPUT SUMMARY!

NCAF
FIGHTER C 30 12] 13 facilities damaged.
BOMBER i 24 123 13 facilities damaged.
SSm 1 1 03 2 facilities damaged.

MOB

FIGHTER C 30 123 13 facilities damaged.
BOMBER E 24 12) 13 facilities damaged.
SOF 1 1 0] 1 facilities damaged.
SSM 1 1 03 2 facilities damaged.

* on-hand inconsistency for 421A--r 1200 0 1200003 < ---- Inconsistency Error
COB

FIGHTER C 14 12) 9 facilities damaged.
BOMBER C 14 122 6 facilities damaged.
SOF 1 1 0) 1 facilities damaged.
SSM 1 1 0] 1 facilities damaged.

FLDCMP
FIGHTER 1 1 03 1 facilities damaged.
BOMBER 1 1 0] 1 facilities damaged.
SOF I 1 0] 1 facilities damaged.
SSM C 1 03 1 facilities damaged.

TELFX
FIGHTER 1 4 0) 5 facilities damaged.
BOMBER 1 2 03 5 facilities damaged.
SOF 1 1 03 2 facilities damaged.
SSM E 1 0) 5 facilities damaged.

TELFD
FIGHTER 1 1 03 1 facilities damaged.
BOMBER 1 1 0) 1 facilities damaged.
SSM 1 1 0) 1 facilities damaged.

HAWK
FIGHTER C 1 03 5 facilities damaged.
BOMBER 1 1 01 5 facilities damaged.
SOF C 1 O1 3 facilities damaged.
SSM 1 1 0) 5 facilities damaged.

LGPORT
FIGHTER C 18 14) 4 facilities damaged,
BOMBER C 18 143 3 facilities damaged.
SSM I 1 0] 3 facilities damaged.

Figure 11-6. DAMAGE PROFILE SUMMARY

11-6

S4

(5) Targets. The target file is the list of installations in priority order. These real-
world locations also designate to which country/group and which notional installation they belong.
The final input is latitude and longitude. Figure B-7 gives an example of the output that accom-
panies the target file processing. It shows several targets being rejected because they do not have
recognizable notional installation designations. DAMOC has no way of knowing if the country/
group is right or wrong since it is user defined. The user, therefore, should check this field
(Nat=?), especially if installation subset reporting will be used.

•no ref-instalL for NUCAF a U NUCAF 200COON 0600000E
..no ref-install for NUCSTOR b U NUCSTOR 200000N 0600000E

.. no ref-instaLl for COMN01 k U TEL FX 200000N 0600000E
*.no ref-install for COMM02 L U TEL FX 200000N 0600000E
..no ref-instaltL for PORT2 aa T PORT 200000N 0600000E
..no ref-install for AMMO bb A AMMO 200000N 0600000E
. .no ref-instaLl for PORT3 cc A PORT 200000N 0600000E

#Regional installations in priority order
(1) COB1 c [Nat=UJ COB
(2) COB2 d [Nat=UJ COB
(3) xyz [Nat=UJ SMPORT
(4) ABC [Nat=UJ LGPORT
(5) COB3 e [Nat=U] COB
(6) COB4 f [Nat=UJ COB
(7) COB5 g [Nat=UJ COB
(8) COB6 h ENat=T) COB
(9) COB7 i ENat=TJ COB
(10) COB8 j [Nat=T3 COB

Figure B-7. TARGET INSTALLATION SUMMARY

b. Results. The reason for DAMOC's existence is a need for a reasonable estimate of
war damage at echelons above corps. When one considers the scores or hundreds of targets, the
varying number o 'lays or periods, the groups of targets, and the varying target makeups, it is
understandable that no single report can capture all information.

(1) Facility Rollups.

(a) Period Repoils. Among the scenario parameters are report frequency and
country codes. While the frequency has no influence on dama:ge calculations, it does set the
timing of damage result summaries. These reports give periodic rollups of facility damage across a
subset of installations defined by the country codes (Figure 11-8). It is important to recognize that
the on-hand and damage amounts in the report are only for targets of the countries or organiza-
tions in this subset.

11-7

NSu ry Report for period ending day 5 for countries T

CatCode Facility On-hand Damage Hits Craters
[111A] RUNWAY 67200 0.0 211.01 19.17
[111C] HELO LANDING PAD 0 0.0 0.00 0.00
[112A] TAXIWAY 23400 0.0 81.68 0.00
[113A] APRON 1500000 0.0 10.91 0.00
[123A] POL DISPENSING PT 0 0.0 0.00 0.00
[125A] POL PIPELINE 0 0.0 0.00 0.00
[125B] VALVE BOX (EA) 0 0.0 0.00 0.00
[131A] ANTENNA (EA) 0 0.0 0.00 0.00
[131B3 COMMO EQUIP FLD 0 0.0 0.00 0.00
[131D3 TRANSMITTER BLDG 0 0.0 0.00 0.00
[131E] TELEMETRY BLDG 0 0.0 0.00 0.00
[133A3 CONTROL TOWER 16875 0.0 0.12 0.00
[141D] AIRCRAFT SHLTR 195000 1950.0 12.00 0.00
1151C3 PIER 0 0.0 0.00 0.00
[159C3 WATER FRONT OPS 0 0.0 0.00 0.00
[163A3 LANDING DOCK 0 0.0 0.00 0.00
[211F] AFCT MAINT FAC 180000 0.0 0.00 0.00
[216A3 AMMO MAINT FAC 0 0.0 0.00 0.00
[217A3 COMMO MAINT FAC 0 0.0 0.00 0.00
[219A3 FAC MAINT SHOP 0 0.0 0.00 0.00
[411A3 FUEL TANK (BBL) 0 0.0 0.00 0.00
[411B3 POL BLADDERS (BBL) 0 0.0 0.00 0.00
E411D) 3K POL TANKS (BBL) 0 0.0 0.00 0.00
[411E3 10K POL TANKS (BBL) 0 0.0 0.00 0.00
[411F3 POL STOR YARD 75000 18750.0 11.22 0.00
[421A] AMMO STORAGE FAC 0 0.0 0.00 0.00
[425A3 OPEN AMMO STORAGE 360000 25272.0 11.40 0.00
[441A3 WAREHOUSE (PORT) 0 0.0 0.00 0.00
[442A3 GP COVERED STOR 0 0.0 0.00 0.00
[451A) GP OPEN STORAGE 0 0.0 0.00 0.00
[452A] PORT OPEN STORAGE 0 0.0 0.00 0.00
[61OA] ADMIN FACILITY 0 0.0 0.00 0.00
[811A] ELECT SUB-STAT 45000 0.0 0.00 0.00
[841C] WTR STOR FAC (GAL) 0 0.0 0.00 0.00
[842A] PUMP UNIT (FA) 0 0.0 0.00 0.00
[851A] HIGHWAY WIDE 0 0.0 0.00 0.00
[851B3 TWO LANE ROAD 0 0.0 0.00 0.00
[851C3 ROAD BRIDGE (SPANS) 0 0.0 0.00 0.00
[860A3 RAILROAD 0 0.0 0.00 0.00
[860B) RAILROAD BRIDGE (SPANS) 0 0.0 0.00 0.00
[860C3 RAILROAD TUNNEL 0 0.0 0.00 0.00
[860D] RAILROAD YARD 0 0.0 0.00 0.00
[99993 FLD CMD POST 0 0.0 0.00 0.00
[999B] LOADER/TRANSPTR 0 0.0 0.00 0.00
[999C3 CRANE (EA) 0 0.0 0.00 0.00
[999D3 FLD CMD POST 0 0.0 0.00 0.00
[999F] GENERATORS (KW) 0 0.0 0.00 0.00

Figure B-8. FACILITY DAMAGE ROLLUP BY PERIOD

(b) Scenario Rollup. This report is identical to the period report except that

it is for the entire scenario. Format and interpretation arc the same.

(2) Installation Summaries.

(a) Attack Record. To see the pattern of which, or to know when, installa-
tions were actually attacked, a record of attacks is kept for each installation. Figure 11-9 gives an
example of this information which is routinely printed along with the facility damage results for
each installation. It indicates the number of sorties (attacks), by threat type, by period. For air

B-8

attacks, it also indicates primary ("/p") and suppression ("Ys") sorties. In this figure, there are two
instances of the period report. This is because an attack record is created at the beginning of the
scenario and at the time of reconstitution of an installation. Here a reconstitution necessarily
occurred sometime in periods 2, 3, or 4.

PERIODS
1 2 3 4 5 6

(FIGHTER /p] 14.0 0.0 0.0 0.0 0.0 0.0
(BOMBER /p] 0.0 0.0 0.0 0.0 0.0 0.0
[SOF /p] 0.) 0.0 0.0 0.0 0.0 0.0
[SSM /p] 0.0 0.0 0.0 0.0 0.0 0.0
[FIGHTER Is] 12.0 11.0 0.0 0.0 0.0 0.0
[BOMBER /s] 0.0 1.0 0.0 0.0 0.0 0.0

[FIGHTER /p] 0.0 0.0 0.0 7.9 4.2 0.0
[BOMBER /p] 0.0 0.0 0.0 1.8 0.1 0.0
ISOF Ip] 0.0 0.0 0.0 0.0 0.0 0.0
[SSM Ip] 0.0 0.0 0.0 1.0 0.0 0.0
[FIGHTER Is] 0.0 0.0 0.0 0.0 0.0 4.2
[BOMBER Is] 0.0 0.0 0.0 0.0 0.0 1.8

Figure B-9. INSTALLATION ATTACK SUMMARY BY PERIOD

(b) Facility Damage. The second part of the Installation Summary shows
facility damage (Figure B-10). Unlike the facility summaries that list all defined catcodes, only the
facilities actually included on the installation are listed for damage and hits. The critical crater
section is limited to appropriate facilities (pavement and piers).

11-9

FACILITY DAMAGE
FaciLity Catcode period I period 2 period 3 period 4 period 5 period 6

RUNWAY 11-A 0.0 0.0 0.0 0.0 0.0 0.0
TAXIWAY 112A 0.0 0.0 0.0 0.0 0.0 0.0

APRON 113A 0.0 0.0 0.0 39600.0 3027.2 0.0
CONTROL TOWER 133A 0.0 0.0 0.0 46.3 3.5 0.0
AIRCRAFT SHLTR 141D 0.0 0.0 0.0 650.0 0.0 0.0
AFCT MAINT FAC 211F 0.0 0.0 0.0 0.0 0.0 0.0
POL STOR YARD 411F 6250.0 0.0 0.0 5112.3 1997.5 0.0
OPEN AMMO STORAGE 425A 8424.0 0.0 0.0 4730.9 2527.2 0.0
ELECT SUB-STAT 811A 0.0 0.0 0.0 0.0 0.0 0.0

FACILITY HITS
Facility Catcode period I period 2 period 3 period 4 period 5 period 6

RUNWAY 111A 53.0 27.1 0.0 19.2 8.3 14.3
TAXIWAY 112A 20.5 10.5 0.0 7.4 3.2 5.5
APRON 113A 2.3 1.3 0 0 1.0 0.4 0.8
CONTROL TOWER 133A 0.0 0.0 0.0 0.1 0.0 0.0
AIRCRAFT SHLTR 141D 0.0 0.0 0.0 4.0 0.0 0.0
AFCT MAINT FAC 211F 0.0 0.0 0.0 0.0 0.0 0.0
POL STOR YARD 411F 3.7 0.0 0.0 3.4 1.2 0.0
OPEN AMMO STORAGE 425A 3.8 0.0 0.0 3.6 1.3 0.0
ELECT SUB-STAT 811A 0.0 0.0 0.0 0.0 0.0 0,0

CRITICAL CRATERS
RUNWAY 111A 5.9 2.7 0.0 1.7 0.9 1.1
TAXIWAY 112A 0.0 0.0 0.0 0.0 0.0 0.0
APRON 113A 0.0 0.0 0.0 0.0 0.0 0.0

Figure B-10. INSTALLATION FACILITY DAMAGE SUMMARY BY PERIOD

(3) Installation Class Attacks. It is sometimes useful to check how the installation
classes are being covered by attacks. Figure B-11 shows an example of accumulated sorties sent
against installation classes, by period. All sortic s are added together (i.e., FIGHTER, BOMBER,
SOF, and SSM). The user can use this report to appraise the impact of priority ordering, sup-
prcssion, and reconstitution on attack allocations.

11-10

Sortie/Installation Breakout:

<< NCAF >> 0.0 0.0 0.0 0.0 0.0 0.0
<< MOB >> 0.0 0.0 0.0 0.0 0.0 0.0
<< COB >> 78.0 19.7 0.0 3.0 0.0 0.0
<< FLDCMP >> 0.0 0.0 0.0 0.0 0.0 0.0
<< TELFX >> 0.0 0.0 0.0 0.0 0.0 0.0
<< TELFD >> 0.0 0.0 0.0 0.0 0.0 0.0
<< HAWK >> 0.0 0.0 0.0 0.0 0.0 0.0
<< LGPORT >> 0.0 0.0 0.0 0.0 0.0 0.0
<< SMPORT >> 0.0 0.0 0.0 0.0 0.0 0.0
<< LGPOL >> 0.0 0.0 0.0 0.0 0.0 0.0
<< SMPOL >> 0.0 0.0 0.0 0.0 0.0 0.0
<< NATOPL >> 0.0 0.0 0.0 0.0 0.0 0.0
<< POLFLD >> 0.0 0.0 0.0 0.0 0.0 0.0
<< AMMOFX >> 0.0 0.0 0.0 0.0 0.0 0.0
<< AHMOFD >> 0.0 0.0 0.0 0.0 0.0 0.0
<< STORFX >> 0.0 0.0 0.0 0.0 0.0 0.0
<< STORFD >> 0.0 0.0 0.0 0.0 0.0 0.0
<< CPOWER >> 0.0 0.0 0.0 0.0 0.0 0.0
<< FPOWER >> 0.0 0.0 0.0 0.0 0.0 0.0
<< WATER >> 0.0 0.0 0.0 0.0 0.0 0.0
<< WHIWAY >> 0.0 0.0 0.0 0.0 0.0 0.0
<< NHIWAY >> 0.0 0.0 0.0 0.0 0.0 0.0
<< HWYBRG >> 0.0 0.0 0.0 0.0 0.0 0.0
<< HWYTNL >> 0.0 0.0 0.0 0.0 0.0 0.0
<< RR >> 0.0 0.0 0.0 0.0 0.0 0.0
<< RRBRG >> 0.0 0.0 0.0 0.0 0.0 0.0
<< RRTNL >> 0.0 0.0 0.0 0.0 0.0 0.0
<< RRYD >> 0.0 0.0 0.0 0.0 0.0 0.0

Figure B-I1. INSTALLATION CLASS ATTACK SUMMARY BY PERIOD

(4) Sortie Summaries. The previous report rolled up total attacks against installa-
tion class. The sortie summary information records the total number of available sorties on a
daily basis. Figure B-12 shows the four threat types (e.g., 1 = FIGHTER, 2 = BOMBER) and
the total available sorties each day for a 30-day scenario. Note that this report lists "available"
sorties while the installation attack report lists "actual" sorties.

B-11

Sorties summary:

(T=1)154125101 82 66 30 29 28 28 22 22 22 22 22 22
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

(T=2) 0 0 0 0 20 20 20 20 20 11 9 7 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(T=3) 0 0 0 0 17 0 0 0 12 0 0 0 27 0 0
0 21 0 0 0 17 0 0 0 13 0 0 0 11 0

(T=4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 8 0 0 0 0 6 0 "0 0 0

Figure B-12. DAILY THREAT CLASS SORTIE SUMMARY

c. Execution Monitoring.

(1) Machine Performance. At different times during execution information is
printed regarding memory and execution performance (Figure B-13). This information is useful in
assuring that nothing untoward occurs. Heap memory readouts occur at the start and end of
execution. If memory demands become a problem, the user might check to see if as much memo-
ry as possible has been made available. In the example, the initial heap measure is 427,728.
Since the instruction portion of DAMOC occupies less than 40K, then [640 - 40 1 - 430 = 170
implies that around 170K of memory is not being used by DAMOC. The user should remove
unnecessary drivers and resident programs to free up some of this memory. The other message
shown here indicates how much time has elapsed since the previous elapsed-time readout. This
allows the user to ensure that execution time for various phases of the model is reasonable.

heap memory = 427728, time is 16:21:45

.- day(l) [elapsed time is 0.083 minutes]

.. day(2) [elapsed time is 0.017 minutes]
==day(3) [eapsed time is 0.000 minutes]
.==day(4) [el.,psed time is 0.000 minutes]
===.day(5) [elapsed time is 0.000 minutes]

heap memory = 397600, time is 16:22:03

Figure 11-13. MODEL PERFORMANCE AND TIMING MESSAGES

B-12

(2) Event Log. An event history is produced automatically during each execution
of the model. It is written to file "SORTIE.LOG" (Figure B-14). Currently, this is not a user-
designated file and a name change of the existing file would be required if one wanted to retain
the information. The information found in the file is very useful to confirm that the attacks and
movement are happening as they should. Figure B-15 gives an annotated excerpt of a typical
SORTIE.LOG file. The user should read these comments.

11-13

(1) 1 /COBI c 14.0-FLOGGERS 77.0
(2) 1 /COB2 d 14.0-FLOGGERS 63.0
(3) 1 Ixyz 8.0-FLOGGERS 49.0
(4) 1 /ABC 18.0-FLOGGERS 41.0
(5) 1 /COB3 e 14.0-FLOGGERS 23.0
(6) 1 /COB4 f 14.0-FLOGGERS 9.0
(7) ...[1]...FLOGGERS - unused 0.0
(8) 1 Ixyz 8.0-FENCERS 77.0
(9) 1 /COB4 f 5.0-FENCERS 69.0
(10) 1 /COB5 g 14.0-FENCERS 63.9
(11) 1 /COB6 h 14.0-FENCERS 49.9
(12) 1 /COB7 i 14.0-FENCERS 35.9
(13) 1 /COB8 j 14.0-FENCERS 21.9
(14) ...[1]...FENCERS - unused 7.9
(15) .. [, 1]...BADGERS - unused 0.0
(16) ...[1]...SPETSNAZ DIV - unused 0.0
(17) ...[1]...SPETSNAZ COR - unused 0.0
(18) ...[1]...SCUD - unused 0.0
(19) .
(20) 3 /xyz 8.0-FLOGGERS 50.5
(21) ...[3]...FLOGGERS - unused 42.5
(22) 3 /xyz 8.0-FENCERS 50.5
(23) ...E 3]...FENCERS - unused 42.5
(24) ---[3]--- BADGERS moves from airbase sac to airbase #2
(25)
(26) 4 /COBI c 12.0 (sup) FLOGGERS 40.9
(27) 4 /COB2 d 12.0 (sup) FLOGGERS 28.9
(28) 4 /xyz 8.0-FLOGGERS 16.9
(29) 4 /ABC 14.0 (sup) FLOGGERS 8.9
(30) ...[4]...FLOGGERS - unused 0.0
(31) 4 /xyz 8.0-FENCERS 40.9
(32) 4 /ABC 5.1 (sup) FENCERS 32.9
(33) 4 /COB3 e 12.0 (sup) FENCERS 27.8
(34) 4 /COB4 f 12.0 (sup) FENCERS 15.8
(35) 4 /COB5 g 12.0 (sup) FENCERS 3.8
(36) ...(4]...FENCERS - unused 0.0
(37) ...[4]...BADGERS - unused 0.0
(38) ...[4]...SPETSNAZ DIV - unused 0.0
(39) ...[4]...SPETSNAZ COR - unused 0.0
(40)
(41) 16 /COB1 c 1.0-SCUD 10.0
(42) 16 /COB2 d 1.0-SCUD 9.0
(43) 16 /xyz 1.0-SCUD 8.0
(44) 16 /ABC 1.0-SCUD 7.0
(45)
(46) .
(47) ...[17]...BADGERS - unused 0.0
(48) ...[17]...SPETSNAZ DIV - unused 14.0

Figure IB-14. SORTIE LOG FILE EXTRACT

11-14

[Line Explanation

1 On day I Target "COBI c" requires 14 sorties to satisfy
a primary FIGHTER attack quota of 14. There are 77 available
FLOGGER sorties. Since 14 < 77 "COBi c" can be saturated.
An indicator in the target will indicate when primary sorties
have been met, and FLOGGER availables are reduced accordingly.

6 On day 6 requirements at "COB4 f" exceed available FLOGGERS
(14 > 9). Rather than look for other targets whose
requirements are less than or equal to 9, the model allocates
the 9 against the target.

8 Target "xyz" was saturated by FLOGGERS on day I (see line 3).
"Xyz" has come up again as a potential target on day 1. The
reason for this is that "xyz" must have had its saturation
flag set. Therefore with each change of threat asset (in this
case FLOGGER to FENCER) it can be targeted again as if it were
unscathed by previous attacks.

9 Here target "COB4 f" is finished off. The requirement is
now for 5 air sorties, and that is well within FENCER
availabilities. Note that a partially saturated condition can
continual indefinitely.

14 The model attempts to allocate threat assets completely. If
all targets are saturated, out of range, or immune to attack
(no damage profile for asset type), then the model has no
place to put excess capability. The message on this line
indicates the uncommitted assets. (Upon examination one would
find that FENCERS have a shorter range than the previously
assigned FLOGGERS. Perhaps reversing the order would better
use assets.)

24 The message here records a redeployment. A BADGER has moved
from one base to another.

26 The "(sup)" found in this entry indicates that this was a
suppression attack. Indeed assuming "COB1 c" was saturated
on day 1 (see line 1) and that the suppression cycle was set
at 3, then this is as it should be. A check of the damage
profiles would also verify that suppression attacks require
12, not 14, attacks for this notional installation class.

41 SCUDs are available on day 16 (cycle - 5) and are used against
targets.

48 SOF are available but unused. Saturation is not the reason
since no other SOF attacks had been made. The most likely
reason is that targets are simply out of range.

Figure 11-15. SORTIE LOG FILE EXTRACT--LINE EXPLANATIONS

1B-IS

0

I

0

S

S

S

Blank Page

0

S

S

0

0
LAST PAGE OF ANNEX B

13-16
S

0

0

S

S

ANNEX C

* DAMOC DOCUMENTATION

S

0

S

0

0

ANNEX C

DAMOC DOCUMENTATION

Paragraph Puge

1 PURPOSE ... 3
2 SCOPE ... 3
3 LIM ITATION .. 3
4 OBJECT TYPE DESCRIPTIONS ... 3

Linkage ... 5
Link .. 5
H ead ... 6
Point ... 6
Threats .. 7
Threatlist .. 8
Damage ... 8
Places ... 9
Notnlinst .. 9
Catcodelist ... 10
Catcode ... 10
Profile .. 11
Installation ... 11
Facildam .. 13
Cumatks ... 14
Area .. 15

5 MAIN PROGRAM .. 15
6 PROGRAM LISTINGS ... 15

* Flpure

C-1 DAMOC OBJECT TYPE CLASS HIERARCHY 4
C-2 ATI'RIBUTE DESCRIPTION OF OBJECT LINKAGE 5
C-3 ATTRIBUTE DESCRIPTION OF OBJECT LINK 5
C-4 ATTRIBUTE DESCRIPTION OF OBJECT HEAD 6
C-5 ATTRIBUTE DESCRIPTION OF OBJECT POINT 6
C-6 ATTRIBUTE DESCRIPTION OF OBJECT THREATS 7
C-7 ATTRIBUTE DESCRIPTION OF OBJECT THREATLIST 8
C-8 ATTRIBUTE DESCRIPTION OF OBJECT DAMAGE 8
C-9 ATTRIBUTE DESCRIPTION OF OBJECT PLACES 9
C-10 ATTRIBUTE DESCRIPTION OF OBJECT NOTNLINST 9

C-1

figure Page

C-11 ATITRIBUTE DESCRIPTION OF OBJECT CATCODELIST 10
C-12 ATTRIBUTE DESCRIPTION OF OBJECT CATCODE 10
C-13 ATTRIBUTE DESCRIPTION OF OBJECT PROFILE 11
C-14 ATTRIBUTE DESCRIPTION OF OBJECT INSTALLATION 12
C-15 ATTRIBUTE DESCRIPTION OF OBJECT FACILDAM 13
C-16 ATTRIBUTE DESCRIPTION OF OBJECT CUMATKS 14
C-17 ATTRIBUTE DESCRIPTION OF OBJECT AREA 15

APPENDIX C-1: SIMSETx PROGRAM LISTING C-1-1
APPENDIX C-2: COMMZ PROGRAM LISTING C-2-1
APPENDIX C-3: DAMOC PROGRAM LISTING C-3-1

C-2

1. PURPOSE. This annex i -an overview of the structure and object types used in the Dam-
age Allocation Model (DAMOC) Program.

2. SCOPE. DAMOC is written in TURBO PASCAL 5.5.1 This version adds object-orient-
ed programming (OOP) constructs to the popular PC programming language. ESC made good
use of the new features throughout DAMOC. As a result, however, p:ogrammers familiar with
PASCAL may have to disabuse themselves of certain preconceptions. Despite retaining all of the
old commands, DAMOC's representation in PASCAL 5.5 is sufficiently different in style and ap-
proach to almost be a different language because of the OOP design. Appreciating these differ-
ences can take time, but is necessary to understand how these featureg are used. This annex is
not a tutorial on 5.5 or OOP.2 It addresses only DAMOC and consequently does not attempt to
school the reader on virtual functions, constructors, inheritance, etc.

3. LIMiTATION. ESC has not prepared line-by-line descriptions of the program units. Nor
will ESC claim that the code is self-documenting--it isn't. On the other hand, if a user needs to
change the program, it must be with knowledge of the program at code level. Inline code remarks
are sometimes more misleading than helpful and frequently frustrate readability that indenting
provides. One need only remember that after compilation and linking, the code is executed.
While OOP is probably the best decomposition technique currently available, program changes
should not be made in isolation. With the object-oriented approach used by DAMOC, someone
looking at the code may have to reorient his/her programming paradigm in order to understand
and to modify the code.

4. OBJECT TYPE DESCRIPTIONS. Becoming familiar with the object types used in
DAMOC goes a long way toward understanding the structure of the model. Indeed, this is an
often-quoted advantage of OOP-based systems. Figure C-i graphically represents the object type
hierarchy and the variables and methods associated with the types. The individual object types
(class definitions) are described below using a common framework (Figures C-2 through C-17).
The name of the type and its ancestor, if applicable, are given first. Next the object variable
attributes (TURBO PASCAL refers to them as fields) are defined. The variable types are also
indicated. Arrays are indicated by a "[]" after the type. Finally, the functional and procedural
attributes (TURBO PASCAL's methods) are described. The descriptions are intended to intro-
duce the object types. The user must look to the actual code (in the appendices) to see how the
concepts are realized. Some object methods have the same (e.g., "dump" or "build") or similar
(e.g., "init" or "init2") names--this usually indicates a similar functional intent although perhaps
with an entirely different code. For example, build methods are common to all set-type objects
and internalize the creation of the disparate lists.

TURBO PASCAL 5.5- Object-Ofiented PrNogranning Guide (Borland International, 1988).
2 As OOP grows in popularity, scores of books are appearing on the subject. Not all of the books are equal, and some

may even be misleading. One well known software pundit published a book about OOP using ADA, but only a short time
later went on record saying one couldn't do OOP in ADA. While one can use OOP-like ideas such as decomposition and
data localization in FORTRAN, C, ADA, etc., those languages lack the compiler-provided hallmarks of true object languages
such as C"' and SIMULA (the nestor of OOP languages). Modelers with experience in other la.guages will go through a
learning curve on the way to becoming object-oriented.

C-3

S

0

S

S

0
U

3 0

A ~ 0______p 0

S

_ gEiji~
___ S

~ 5

_________ Ildihifi
S

C-4
S

a. Linkage. The main report discusses the purpose of the SIMSETx layer of the program,
which contains facilities for the manipulation of circular two-way lists (a.k.a. sets). Attributes of object
type linkage arc not accessed directly. In a more recent version of PASCAL 5.5, they would be "protected"
variables. Link and head are the derived types used by the modeler to construct his or her own two-way
lists.

OBJECT TYPE: linkage ANCESTOR TYPE: none

VARIABLES:
* suc reflinkage points to the following

linkage object
pred reflinkage points to the preceding

linkage element

PROCEDURES:
init this is the PASCAL constructor called when

creating a linkage object
out this extracts an object from a set, setting

suc and pred equal to nil and adjusting
linkage values of adjacent linkage objects

Figure C-2. ATTRIBUTE DESCRIPTION OF OBJECT LINKAGE

b. Link. When an object is defined as a descendent of link, it enables list membership and can
avail itself of the set manipulation routines. Various method attributes are provided to position the object
upon insertion. Note that a link object can be in only one list at a time. If one wants to place a single
object in several lists, then aliases (other link objects pointing to the common object) would have to be
used.

OBJECT TYPE: link ANCESTOR TYPE: linkage

PROCEDURES:
follow places object after a referenced linkage

object
precede places object before a referenced linkage

object
into puts object into referenced list

Figure C-3. ATTRIBUTE DESCRIPTION OF OBJECT LINK

C-5

c. Head. Whereas link enables list or set membership, the list itself is established by instant-
iating objects or descendants of object type head.

OBJECT TYPE: head ANCESTOR TYPE: linkage

FUNCTIONS:
first reflinkage returns the first member of the set

or nil if list is empty

last reflinkage returns the last member in the set
empty boolean true if set is empty, false

otherwise
cardinal integer returns the number of objects in

list

PROCEDURES:
init the constructor called when a head object is

created
clear clears contents of a set

Figure C-4. ATTRIBUTE DESCRIPTION OF OBJECT HEAD

d. Point. Point endows an object with characteristics to support orthodromic distance calcu-
lations. Objects in DAMOC that have locations (bases and installations) are, or are descendants of, this
type. It accepts latitude and longitude entries (converting them internally to radians for spherical trigono-
metric calculations) as well as location-naming information.

OBJECT TYPE: point ANCESTOR TYPE: link

VARIABLES:
x real the internal spherical equivalent

of the place's latitude
y real the internal spherical equivalent

of the place's longitude
name string the common place name
code string the code used to identify the

place (e.g., a GEOLOC)

0
FUNCTIONS:

disto real calculates great circle arc
distance (nm) from this
point to a designated place

next refpoint returns the next object in the
referenced list 0

PROCEDURES:
init the constructor that converts input values

into place variables

0
Figure C-5. AITRIBUTE I)ESCRIIrrlON OF OBJEC(f POINT

C-6

e. Threats. The informa~ion read in for each entry in the THREAT file is used to create
threats objects. These objects comprise the threat set.

OBJECT TYPE: threats ANCESTOR TYPE: link

VARIABLES:
name string familiar name of threat system
thrtype integer internally used threat index

(bomber = 2, etc.)
base refpoint points to initial location base
range real system range -

readyrate real operational readiness rate for
planes (see threat in file
annex for ssm and sof)

attrition real attrition or use percent
amount real initial starting quantity
minimum real minimum level of onhand stocks
move integer[] move times
change integer(] rate change dates
fwd refpoint[] stores base pointers used for

theater moves
rates real[] saves rate change table

FUNCTIONS:
reaches boolean test if target is in range
next refthreats gets next object in threats list

PROCEDURES:
init constructor used to initialize threat objects
update checks to see if move or change should be made

Figure C-6. ATTRIBUTE DESCRIPTION OF OBJECT THREATS

C-7

f. Threatlist. Threaflist is.the list in which all threat objects are saved. During processing,
threat items are always accessed seriatim.

OBJECT TYPE: threatlist ANCESTOR TYPE: head

FUNCTIONS:
first refthreats returns first threat system in

this list

PROCEDURES:
build initiates construction of attacker objects

(consistency checks are within threats)
dump prints validated attacker list

Figure C-7. ATTRIBUTE DESCRIPTION OF OBJECT TIHREATLIST

g. Damage. This object--only one is created during execution--is the damage table. Its purpose
is to group all the notional installations and their associated damage profiles.

OBJECT TYPE: damage ANCESTOR TYPE: head

FUNCTIONS:
first refnotnlinst returns the first notional instal-

lation in the table
find refnotnlinst looks for a particular notional

installation (if not present
then find <- null)

PROCEDURES:
build this method opens the damage file and reads in

the profiles. It also creates the category
code (facility identification) list based on
the facilities found

breakout this method sums all the attacks (sorties, raids,
missiles) against installation classes (i.e.,
notional installations) and prints it by period

dump produces the summary of damage profiles,
including the check of facility quantities

Figure C-8. ATTRIBUTE DESCRIPTION OF OBJECT DAMAGE

C-8

h. Places. This object type is for the list of attacker bases to which threat systems
can be deployed.

OBJECT TYPE: places ANCESTOR TYPE: head

FUNCTIONS:
find refpoint searches for point with requested

code
first refpoint returns first member of list

PROCEDURES:
build initiates construction of base list
dump prints places contents

Figure C-9. ATTRIBUTE DESCRIPTION OF OBJECT PLACES

i. Notnlinst. This type encapsulates the information associated with a notional installation of
type "instype." The damage profiles (profile) against this "instype" are accessed through the threats array.
Collectively, the notnlinst objects comprise the damage table.

OBJECT TYPE: notnlinst ANCESTOR TYPE: link

VARIABLES:
instype string the user designated identification

code for notional type (e.g., COB
for collocated operating bases)

sortyalloc sortyp an array type used to record how
many sorties were launched
against this notional instal

threats refpro- a pointer array to damage profiles
file[] (every threat type need not be

present)

FUNCTIONS:
next refnotnl- returns the next notional instal-

inst lation in the damage table

PROCEDURES:
init2 constructor creates the notional installations
addsorties information from target cumataks are added

to notional installations
attacks at the end of an execution the total sorties

are rolled up and summarized by period (but
only if irstallation reports are requested)

Figure C-10. AITRIBUTE DESCRIPTION OF OBJECT NOTNLINST

C-9

j. Catcodelist. This object type contains the facility master list. It is derived from the facilities
encountered in the damage profiles. It conserves memory and enforces uniformity by using a common
label for each facility type.

[OBJECT TYPE: catcodelist ANCESTOR TYPE: head

FUNCTIONS:
first refcatcode this returns the first catcode in

the list
add refcatcode this routine checks if the catcode

is already in the list--if it
is not, a new catcode is created
and filed in its sorted location

PROCEDURES:
dump prints out the contents of the list

Figure C-11. ATI'RIBUTE DESCRIPTION OF OBJECT CATCODELIST

k. Catcode. Catcode stands for the category code designation for facilities. While there is no
stricture against defining unique facility codes, it ig recommended that DAMOC use the JCS 4-character
version (for example, the Army uses a 5-character code in its facility component system). Catcode objects
contain a descriptive title of the catcode, and their relative location in the catcodelist set is used as an
index in the facility rollup reports.

OBJECT TYPE: catcode ANCESTOR TYPE: link

VARIABLES:
code string a 4 character code used internally

to identify facilities (DAMOC
does not validate codes, the
user must ensure consistency)

name string the long name for a facility
repindx integer the relative location of the

facility in the reference list

[FUNCTIONS:
next refcatcode returns the next catcode in the

list

PROCEDURES:
init the constructor which initializes the object 0

Figure C-12. AITRIBUTE DESCRIPTION OF OBJECT CATCODE

3 Department of Defense Facility Classes and Construction Categories, DOD Instntction 4165.3 (24 October 1978).

C-10

I. Profile. This object embodies the individual damage profiles. It is accessed through the
threats array in noinlinst objects. It contains the list of facility amounts and damage (facildarn objects) as
well as the attack package sizes that produce the damage.

OBJECT TYPE: profile ANCESTOR TYPE: head

VARIABLES:
patks integer the number of primary attacks

necessary to produce the
0 associated damage

satks integer the suppression attack package sizes
(planes against air bases and
ports)

FUNCTIONS:
first refacildam returns the first facildam object

in the template (i.e., damage
profiles)

PROCEDURES:
init2 the constructor method that initializes the

object and decodes the primary and
secondary attack amounts from input

Figure C-13. AITRIBUTE DESCRIPTiON OF OBJECT PROFILE

m. Installation. The focus of DAMOC is on installations. To whom do they belong? Where
are they? What attacks are made against them? What facilities are damaged? To satisfy these demands,
this object class incorporates more variable and method attributes than any other class.

C-I1

OBJECT TYPE: installation ANCESTOR TYPE: point

VARIABLES:
ref string notional installation ID
nation char single character nation/organization

indicator (user defined)
passes real[] primary attacks made that day, by

threat type
suprsatks real[] suppression attacks
curatklog ^cumatks pointer to current phase attack log
initatklog Acumatks first log in stack
suprsday integer last day either saturated or sup-

pressed (air bases & ports only)
saturated booleanf] flags threat type attainment of

threshold attack level
airbase boolean true if COB, MOB, or other air base
port boolean true if SMPORT or LGPORT
unsat boolean if "unsaturated" type installation

then true
daminfo refnotnl- points to appropriate notional entry

inst in damage table

FUNCTIONS:
next refinstal- returns the next installation in the

lation "front" list

PROCEDURES:
init constructor which initializes the many instal-

lation attributes
attack this method determines how many attackers

are necessary to saturate or suppress;
how many are available, and how they
will be allocated

fine executed when an installation is finished, i.e.,
saturated

property returns a list of onhand facility quantities
(found in the notional list)

bda performs the damage assessment
pdreport checks to see if any attacks have been made

against this installation during the period--
if yes, then the amounts are added to the
cumulative period table

update if installation is "reconstituted," this
method closes and creates attack logs

pmd performs the postmortem dump (PMD) that
prints each attack log phase and damage,
hits, and crater summaries

Figure C-14. ATTRIBUTE DESCRIPTION OF OBJECT INSTALLATION

C-12

n. Facildam. This object type contains the damage information. Each attack profile object has
a variable number of these objects correspondi1 g to the particular types of facilities that are damaged
during an attack.

OBJECT TYPE: facildam ANCESTOR TYPE: link

VARIABLES:
catcode string the JCS category code (4 characters)
xcatcode refcatcode pointer to catcode list with

long title
onhand longint the installations onhand quantity
damprcnt real the percent damaged in full attack
hits real the associated number of hits
criticals real the number of critical craters to

restore a minimum operational
strip (MOS)

FUNCTIONS:
next refacildam returns the next facility damage

entry in the profile
pavement boolean true if the catcode is either

1ilA, 112A, or 113A
pier boolean true if the catcode is 151C

PROCEDURES:
init2 the constructor which initializes the object

and decodes the input record values

Figure C-15. ATTRIBUTE DESCRIPTION OF OBJECT FACILDAM

C-13

o. Cumatks. This is a special object type used to record the attacks made against an instal-
lation. Except for the possibility of a target being reconstituted (i.e., the damage fully repaired), this
information could have been part of an installation object. Anticipating the possible addition of repair
capability being added to the model (directly or indirectly), cuinatks now enables the model to track
successive phases of attacks. Phase" here means the time from when a target could be attacked to when it
is considered fully repaired, thereby initiating a new phase.

OBJECT TYPE: cumatks ANCESTOR TYPE: none

VARIABLES:
nextlog refcumatks points to the next cumatks object

found at a target
cumpasses sortyp stores the primary attack sorties

for this attack phase
cumsuprs sortys stores suppression attacks during

phase
startday integer the day this phase begins
endday integer the day this phase ends

FUNCTIONS:
contrib boolean checks start and end days to see if

period and phase intersect

PROCEDURES:
init the constructor which sets up timing and

reference values
accum adds current period's running totals to the

'0th' column of the pass and suppress
arrays

close when an installation is reconstituted, a new
cumatks is created; this method
terminates the prior object

prime zeroes the accumulator (running total)
portions of the pass and suppress arrays

range since start and end dates for the object may
not be on period boundaries, this routine
determines the period range for the
"breakout" reports

dump this report is part of the installation pied
summary

Figure C-16. ATTRIBUTE DESCRIPTION OF OBJECT CUMATKS

C-14

p. Area. This is the set object where installation objects are assigned. Note that as the model
is presently configured, the order of the installations determines their relative priority as a target.

OBJECT TYPE: area ANCESTOR TYPE: head

FUNCTIONS:
first refinstal- returns the first installation

lation in the list

PROCEDURES:
build this routine opens the target file and if the

data meets certain internal consistency
checks, creates installation objects for
each valid entry

postmortem at the end of execution this routine will
initiate reporting of damage assessments
at installations in the selected set
(the default is to report; use II' in
the country string if reports are not
wanted)

dump prints the list of valid installation targets
in list order

Figure C-17. ATTRIBUTE DESCRIPTION OF OBJECT AREA

5. MAIN PROGRAM. The third software layer of DAMOC is the main program. This
code defines the scenario parameters, requests input file identities, initiates appropriate table
(damage, catcode) and list build routines, coordinates threat allocation against targets, and defines
or invokes the various reports.

6. PROGRAM LISTINGS. The actual program listings are found in Appendices C-1, C-2,
and C-3 that accompany this annex.

C-15

Blank Page

LAST PAGE OF ANNEX C

C-16

0

0

0

0

0

APPENDIX C-I

* SIMSETx PROGRAM LISTING

0

0

0

0

c-i-i
0

S

S

S

Blank Page
S

S

S

S

S

C-12
S

SIMSETx PROGRAM LISTING

1 unit SIMSETx;
2
3 INTERFACE
4
5 TYPE
6
7 ref Linkage = ^Linkage;
8 reftink A Link;
9 refhead = Ahead;
10
11 Linkage = object
12 suc,pred : refLinkage;
13 constructor init;
14 procedure out;
15 end;
16
17 Link = object(Linkage)
18 procedure foLLow(x:ref Linkage);
19 procedure precede(x:ref Linkage);
20 procedure into(s: refhead);
21 function next:ref Link;
22 end;
23
24 head = object(Linkage)
25 function first: refLinkage;
26 function Last: refLinkage;
27 procedure cLear;
28 function empty: boolean;
29 function cardinaL: integer;
30 constructor init;
31 end;
32
33 IMPLEMENTATION
34
x, { LINKAGE..
36
37 constructor Linkage.init;
38 begin pred := niL; suc := niL; end;
39
40 procedure Linkage.out;
41 begin
42 predA.suc := suc; sucA.pred := pred;
43 suc := niL; pred := niL;
4end;
45
46 ... LINK I
47
48 procedure Link.foLLow(x:refLinkage);
49 begin
50 out;
51 if x * niL then
52 begin
53 if xA.suc 0 niL then
54 begin
55 pred := x;suc := xA.suc;
56 sucA.pred := @setf;xA.suc := @seLf;
57 end;
58 end;
59 end;
60
61 procedure Link.precede(x: ref Linkage);
62 begin
63 out;
64 if x * nil then
65 begin
66 if xA.suc 0 niL then
67 begin

C-1-3

SIMSETx PROGRAM LISTING

68 suc := x; pred := xA.pred;
69 predA.SuC := @seLf; xA.pred : self;
70 end;
71 end;
72 end;
73
74 procedure Link.into(s:refhead);
75 begin precede(s); end;
76
77 function Link.next:ref Link;
78 begin
79 if typeof(suc^) 0 typeof(seLf) then
80 next nit
81 eLse
82 next @sucA;
83 end;
84
85 {... HEAD.
86
87 function head.cardinaL: integer;
88 var
89 1 : integer;
90 p : refLinkage;
91 begin
92 i :0;
93 p first;
94 whiLe p 0 nit do
95 begin
96 i :i + 1;
97 p pA.suc ; if p = @seLf then p niL;
98 end;
99 cardinaL := i;
100 end;
101
102 function head.first:reftinkage;
103 begin
104 if not empty then first := suc eLse first nit;
105 end;
106
107 function head. Last:refLinkage;
108 begin
109 if not empty then Last := pred eLse Last nit;
110 end;
111

112 function head.empty:booLean;
113 begin empty := suc = @seLf; end;
114
115 procedure head.clear;
116 var
117 x : refLinkage;
118 begin
119 whiLe first 0 nit do
120 begin
121 x := first;
122 XA.oUt;
123 end;
124 end;
125
126 constructor head.init;
127 begin suc:=aseLf; pred:=@seLf; end;
128
129 end C SINSET UNIT I.

LAST PAGE OF APPENDIX C-1

C-1.4

APPENDIX C-2

* COMMZ PROGRAM LISTING

C-2-1

I

I

I

4

I

Blank Page
4

4

4

4

4

C-2-2
4

COMMZ PROGRAM LISTING

* I unit commz;
2
3 interface
4
5 uses simsetx;
6
7 const

*8 nthrt . integer = 4;
9 maxperiod integer = 10;
10 threat :array(1..4J of string[l03=(IFIGHTER ','BOMBER '
11 'SOF yssm)
12 type
13 refdamage = A damage;
14 refnotntinst = A notntinst;
15 refprofile = A profile;
16 refcatcodeList = A catcodeList;

*17 refthreatList = A threatList;
18 refaci Idam = A faci Idam;
19 refinstaLtation = A instaLtation;
20 ref catcode = Acatcode;
21 refarea = A area;
22 ref threats = A threats;
23 refpoint = A point;
24 refpLaces = Aptaces;

025 ref cumatks = A cumatks;
26
27 sortyp = arrayEl. .4,0. .103 of real.;
28 sortys = arraytl. .2,0. .103 of real;
29 damrep = arrayti. .75,1..33 of real;
30 inventory = arrayEl. .753 of real.;
31
32 point = object(Link)
33 x,y reaL.;
34 name, code string[203;
35 constructor init~nm,short, (at, on:string);
36 fun';tion disto(dest: refpoint): real;
37 function next: refpoint;
38 end -Cpoint;
39
40 threats = object(Link)
41 name string[l23;
42 thrtype : integer;
43 base : ref point;

44 range : real;
45 readyrate : reat;
46 attrition : real;
47 amount : real;
48 minimum : real;

*49 move,change: arrayll..33 of integer;
50 fwd : array~l. .3) of refpoint;
51 rates : array~l. .3,1. .2) of real.;
52
53 constructor init(s,r:string;bases:refptaces;var goud:bootean);
54 procedure update(dy:integer;var togfyL:text);
55 function reaches(tgt:refinstaLLation):booLean;
56 function next: refthreats;

* 57 end -{ threats }
58
59 places object(head)
60 procedure build;
61 procedure dump;
62 function rind(itype:string):refpoint;
63 function first: refpoint;
64 end (places 1

0 65
66 threaiList =object(head)
67 procedure buil d(bases:retpLaces);

C-2-3
0

90MMZ PROGRAM LISTING

69 procedure dump;69 function first: refthreats;70 end -C threattist }
71
72 notntlnst object(Link)73 instype string[103;74 sortyatloc : sortyp;

75threats : arrayti. .43 of refprofite;76 constructor init2(t:string);78 function next: refnotntinst;n78 procedure addsortiescprbeg,prend. integer;var Ml :Sortyp;var u2:sortys);79 procedure attacks(per:integer);80 end (C notntist I;
82damage

= object(head)0
83 function first: refnotntinst;84 procedure bui Ld(factist:refcatcojetist);85 function find(itype:string) :refnotntinst;86 procedure dump(maxcats: integer)*
87 procedure breakout(nprd: integer)89 end C(damage 1;
90 prof ite =object(heed)91 patks integer;92 satks :integer;93 function first: refacidaM.;94 constructor init2(s:string);
96 end -C profiLe ~
97 facitdam =object(tink)98 catcode :stringt4J;99 xcatcode :ref catcode;100 onhand :tongint;101 damprcnt :reaL;102 t9hits reaL;103 criticaLs :reaL;104 function next: refacitdam;105 function pavement : bootean;106 function pier : booLean;107 constructor init2(st:string);108 end (facitdam 1109

110
ill cumatks =object112 next tog : ref cumatks;113 cumpasses : sortyp;114 cumsuprs : sortys;115 startday integer;116 endday : integer;117 constructor init(day:integer);118 procedure accum(period: integer);119 prcedure ctose(nxttog:refcumatks;day: integer);120 procedure prime;

122 function contrib(period:integer): bootean;122procedure range(nper,per~en. integer;daminfo: refnotntinst;123
var perstrt,perend: integer);124 procedure dump(supatks:booLean;pr. integer);

126 end (cumatksl,;
127
128 instaLLation object~point)129 ref : string[1o);130 nation : char;
131 passes : array El. .43 of reat;12suprsatks : array El. .2) of reaL;133 curatk tog Acumatks;134 initatktog A cmtks;

C-2-4

COMMZ PROGRAM LISTING

*135 suprsday : integer;
136 saturated : array Cl. .43 of booLean;
137 airbase,port: bootean;
138 unsat : bootean;
139 daminfo : refnotnhinst;
140 constructor init(var s:refdamage;rec:string;var accept:booLean);
141 function next: refinstatLation;
142 procedure attack(var amt:reat;var Log:text;thrtyp,dy,npr,
143 sprcycLe:integer;tn:string);
144 procedure fine(thrt,dy:integer);
145 procedure property(var assets:inventory);
146 procedure bda(ip,mf: integer;atks:refcumatks;
147 var assets:inventory;var resuLts:damrep);
148 procedure pdreport(period,day,maxf:integer;var resutts:damrep);
149 procedure update(pr,day: integer; reset:bootean);
150 procedure pmd(fx,pr,periodten:integer;ctist:refcatcodeList);

* 151 end (instaLLation 1
152
153 area = object(head)
154 function first: refinstattation;
155 procedure buiLd(d:refdamage);
156 procedure postmortem(nfacs,nprd, Lenprd: integer;
157 f tab: refcatcodetist;mask:string);
158 procedure dump;

*159 end -Carea;
160
161 catcode = object(Link)
162 code : stringE43;
163 name : stringC2OJ;
164 repindx :integer;
165 constructor init(c,n:string);
166 function next: refcatcodle;

* 167 end (catcode }
168
169 catcodeList = object(head,
170 function first: refcatcode;
171 function add(s:string) :refcatcode;
172 procedure dump;
173 end (catcodetist 1
174

*175 impLementation
176
177... POINT METHODS }
178
179 constructor point.init(nm,short,Lat, Lon:string);
180 var
181 xd,xm,xs,yd,ym,ys,degperad reaL;
182 c : integer;

*183 begin
184 Link.init;
185 vat(copy(tat,1,2),xd,c);
186 vaL(copy(Lat,3,2),xa,c);
187 vaL(copy(Lon,1,3),yd,c);
188 vaL~copy(Lon,4,2),ya,c);
189 name := nm; code := short;
190 degperad := 360/(2 * Pi);

*191 x :(xd+xm/60) / degperad;
192 y :(yd+ym/60) / degperad;
193 if copy(Lat,7,1) = IS' then x -x;

194 if copy(Lon,8,1) =U V hen y y;
195 end;
196
197 function point.disto(dest:refpoint):reaL;
198 var

*199 arc,deLta,cose,radist : reaL;
200 begin
201 detta := Abs(y - deStA.y);

C-2-5

COMMZ PROGRAM LISTING

202 if delta > Pi then delta := (2*Pi) - delta;
203 cose := sin(x)*sin(destA.x) + cos(x)*cos(destA.x)*cos(delta);
204 radist := (Pi/2) - arctan(cose / sqrt(1 - cose*cose));
205 arc := radist * (360/(2 * Pi)) * 60; (minutes of arc)
206 C disto 1.852 * arc; kiLometer conversion of 1' arc)
207 disto arc; (distance in nautical mites)
208 end;
209
210 function point.next: refpoint;
211 var Ink : reflink;
212 begin Lnk := link.next; next := @tnkA; end;
213
214
215 PLACES METHODS)
216
217 procedure pLaces.build;
218 var
219 fn text; fyle : string[20]; buf : string[80);
220 p refpoint;
221 begin
222 write(' enter filename of threat bases--> ');
223 readtn(fyte); assign(fn, fyLe); reset(fn);
224 while not eof(fn) do
225 begin
226 readln(fn,buf);
227 new(p);
228 if pA.init(copy(buf,1,20),copy(buf,25,5),
229 copy(buf,41,7),copy(buf,51,8)) then
230 p^.into(@self)
231 else
232 writetn('..base rejected --',buf);
233 end;
234 cLose(fn);
235 end;
236
237 function pLaces.first: refpoint;
238 var Lkg : refLinkage;
239 begin lkg := head.first; first := @tkg^; end;
240
241 function ptaces.find(itype:string):refpoint;
242 var
243 p : refpoint;
244 begin
245 find := nit;
246 p := first;
247 white p 0 nil do
248 if pA.code = itype then
249 begin
250 find := p;
251 p := nil;
252 end
253 eLse
254 p := pA.next;
255 end;
256
257
258 procedure pLaces.dump;
259 var t : refpoint; cnt integer;
260 begin
261 writeLn(' attack bases defined');
262 t := first;
263 while t 0 niL do
264 begin
265 writetn(tA.name:25, , [.,tA.code, ,] J ,
266 tA.x:10:5,tA.y:10:5);
267 t := tA.next;
268 end;

C-2-6

COMMZ PROGRAM LISTING

269 writetn;
270 end;
271
272
273
274 { THREATS METHODS }
275
276
277 constructor threats.init(s,r:string;bases:refpLaces;var good:booLean);
278 var typ : string[10]; ierr : integer;-'
279 begin
280 Link.init;
281 base := basesA.find(copy(s,31,5));
282 if base = nil then
283 begin
284 writetn('...threat start base error - 1,s);
285 good := false;
286 end
287 else
288 begin
289 typ := copy(s,21,10); thrtype -1;
290 for i := I to nthrt do if typ = threat[ij then thrtype i;
291 if thrtype > 0 then
292 begin
293 good true;
294 name copy(s,1,20);
295 vaL(copy(s,36,5),range,err);
296 vat(copy(s,41,5),amount,err);
297 vat(copy(s,46,5),minimum,err);
298 readyrate := 0.0; attrition := 0.0;
299 for i := 1 to 3 do
300 begin
301 vaL(copy(s,51+10*(i-1),5),movei],err);
302 if move~i3 > 0 then
303 begin
304 fwdEi] := basesA.find(copy(s,56+10*(i-1),5));
305 if fwd[iJ = nil then
306 begin
307 writetn(' - redeploy error in 1,s);
308 good:=false;
309 end;
310 end;
311 end;
312 for i := 1 to 3 do
313 begin
314 vaL(copy(r,11+15*(i-1),5),change~i,err);
315 if changeEiJ > 0 then
316 begin
317 val(copy(r,16+15*(i-1),5),ratesti,13,err);
318 vaL(copy(r,21+15*(i-1),5),ratesli,2],err);
319 if ratesli,1J*ratesli,2] > 1 then
320 begin
321 writeLn(' - rate range error in ',name);
322 good := false;
323 end;
324 end;
325 end;
326 end
327 else
328 good := false;
329 end;
330 end;
331
332 function threats.reaches(tgt:refinstaL[ation):boolean;
333 begin
334 if base^.disto(tgt) < range then reaches := true
335 else reaches := false;

C-2-7

COMMZ PROGRAM LISTING

336 end;
337
338 procedure threats.update(dy:integer;var Logfyi:text);
339 var i integer;
340 begin
341 for i :1 to 3 do
342 begin
343 if dy = moveEi3 then
344 begin
345 writetn(LogfyL,'---[' ,dy:2,'--- ,name,
346 ' moves from ',base^.name,' to l,fwd~i]A.name);
347 base := fwdli];
348 end;
349 if dy = changeli] then
350 begin
351 readyrate ratesti,13;
352 attrition := ratesti,23;
353 end;
354 end;
355 end;
356
357 function threats.next: refthreats;
358 var Lnk: refLink;
359 begin ink := Link.next; next @LnkA; end;
360

361
362
363 {................... THREATLIST METHODS
364
365
366 procedure threatList.bui td(bases:refptaces);
367 var
368 fn text; fyle : stringE203; bufl,buf2 : string[8Cl;
369 t refthreats; ok : boolean;
370 begin
371 write(' enter fiLename of threat systems--> ');
372 readtn(fyLe); assign(fn, fyte); reset(fn);
373 whiLe not eof(fn) do
374 begin
375 readtn(fn,bufl);readtn(fn,buf2);
376 new(t,init(bufl,buf2,bases,ok));
377 if ok then tA.into(@seLf)
378 else
379 writetn('..threat rejected --',bufl);
380 end;
381 close(fn);
382 end;
383
384 function threattist.first: refthreats;
385 var tkg : refLinkage;
386 begin tkg := head.first; first := @LkgA; end;
387
388
389 procedure threatList.dump;
390 var t : refthreats; cnt : integer;
391 begin
392 writetn(' threat definition');
393 t := first;
394 whiLe t * nil do
395 begin
396 writeln(tA.name:25,1 [,threatCtA.thrtype],] .,
397 t^.range:6:1);
398 t := tA.next;
399 end;
400 writeln;
401 end;
402

C-2-8

COMMZ PROGRAM LISTING

403 {................... DAMAGE METHODS}
404
405 function darage.find(itype:string):refnotnlinst;
406 var
407 ri : refnotnlinst;
408 begin
409 find := nil;
410 ri := first;
411 while ri * nil do
412 if riA.instype = itype then
413 begin
414 find := ri;
415 ri := nil;
416 end
417 else
418 ri := riA.next;
419 end;
420
421 procedure damage.build(facList:refcatcodelist);
422 var
423 fn : text;
424 i,it: integer;
425 fyte string[203;
426 iobuf string[80];
427 facrec refacildam;
428 thrt refprofite;
429 tinst refnotnLinst;
430 thrtyp string[10;
431 begin
432 write(' enter fitename of instalLation-attack profiLes--> 1);
433 readtn(fyle); assign(fn, fyLe); reset(fn);
434 while not eof(fn) do
435 begin
436 readtn(fn,iobuf);
437 if iobuf[1] '*' then

438 begin
439 tinst := find(copy(iobuf,2,10));
440 if tinst = nil then
441 begin
442 writetn('instatprofite created for [',copy(iobuf,2,10),'3');
443 tinst:=new(refnotntinst,init2(iobuf));
444 tinstA.into(@sekf);
445 end;
446 thrtyp := copy(iobuf,26,10);
447 it:=O;for i:= I to nthrt do if thrtyp = threat~i3 then it i;
448 if it = 0 then
449 writeln(' ---- invalid threat type -- ',thrtyp)
450 else
451 if tinstA.threatsCit3 = nil then
452 begin
453 tinstA.threats[it3:=
454 new(refprofite,init2(iobuf));
455 thrt:=tinstA.threats[it];
456 end
457 else
458 begin
459 thrt := nil;
460 writeLn(l...dupticate threat encountered-',iobuf);
461 end;
462 end
463 else
464 if thrt * nil then
465 begin
466 facrec:=new(refaciLdam,init2(iobuf));
467 facrecA.into(thrt);
468 facrecA.xcatcode := facList^.add(iobuf);
469 end;

C-2-9

COMMZ PROGRAM LISTING

470 end;
471 cLose(fn);
472 end;
473
474 function damage.first: refnotnLinst;
475 var Lkg : reftinkage;
476 begin Lkg := head.first; first := @LkgA; end;
477
478

479 procedure damage.breakout(nprd:integer);
480 var
481 instctass : refnotnLinst;
482 begin
483 writeLn;
484 writeLn('Sortie/Instalation Breakout: 1);
485 writetn;
486 instcLass := first;
487 whiLe instcLass * nit do
488 begin
489 instcLassA.attacks(nprd);
490 instcLass := instcLassA.next;
491 end;
492 end;
493
494
495 procedure damage.dump(maxcats:integer);
496 var
497 x : refnotnLinst;
498 f : refacitdam;
499 assetchk : array [1..1003 of tongint;
500 ij : integer;
501 begin
502 writeln('#==DAMAGE TEMPLATE INPUT SUMMARY!');
503 x := first;
504 while x 0 nil do
505 begin
506 writetn(x^.instype:15);
507 for i :1 1 to nthrt do
508 if xA.threats~i] 0 nil then
509 writetn(' ',threatEi]:12,1 El,
510 xA.threatsi3A.patks:5,xA.threats~i]A.satks:5,'',
511 xA.threatslijA. cardinat:10,' facilities damaged.');
512 for i I to maxcats do sssetchk[iJ := 0;
513 for i 1 to nthrt do
514 begin
515 f := xA.threats[i3^.first;
516 while f 0 nil do
517 begin
518 j := fA.xcatcode^.repindx;
519 if assetchktjj = 0 then
520 dssetchkEj3 :=fA.onhand
521 else
522 if assetchkEj3 0 fA.onhand then
523 writeLn(' * onhand inconsistency for ',
524 fA. catcode,'--El,assetchktjJ:10,
525 ' 0 ',fA.onhand:10,'3');
526 f := fAnext;
527 end;
528 end;
529 x : XA.next;
530 end;
531 end;
532
533 {................... NOTNLINST METHODS
534
535 constructor notnLinst.init2(t:string);
536 var i,j,err : integer;

C-2-1O

,OMMZ PROGRAM LISTING

537 begin
538 Link.init;
539 instype := copy(t,2,10);
540 for i := 1 to 4 do
541 begin
542 threats~i] := niL;
543 for j := 1 to maxperiod do
544 sortyaLLoc[i,j] := 0.0;
545 end;
546 end;
547
548 function notnLinst.next: refnotnLinst;
549 var Lnk : refLink;
550 begin Lnk := Link.next; next := Lnk^; end;
551
552
553
554 procedure notnLinst.addsorties(prbeg,prend:integer;var ml:sortyp;var
555 m2:sortys);
556 var ij : integer;
557 begin
558 for j := prbeg to prend do
559 for i := 1 to 4 do
560 begin
561 sortyaLtocti,j] := sortyaLloc[i,j3 + ml[i,j];
562 if i < 3 then
563 sortyaLLoc[i,j3 := sortyaLLocti,j] + m2[i,j];
564 erd;
565 end;
566
567 procedure notnLinst.attacks(per: integer);
568 var ij : integer;s : reaL;
569 begin
570 writeLn;write('<< I,instype,' W);
571 (writeLn;
572 for i := I to nthrt do
573 begin
574 write(threat[il);
575 for j := 1 to per do write(sortyattocli,j]:8:1);
576 writetn;
577 end;)
578 for j:= I to per do
579 begin
580 s:= sortyaLLoc[1,j] + sortyaLLoc[2,j] + sortyatLoc[?,j3
581 +sortyaLtoc[4,j];
582 write(s:8:1);
583 end;
584 writetn;
585 end;
586
587 FACILDAN METHODS}
588
589
590 constructor faci tdam. init2(st:string);
591 var err : integer;
592 begin
593 Link.init;
594 catcode := copy(st,26,4);
595 vat(copy(st,31,10),onhand,err);
596 vat(copy(st,41,10),damprcnt,err); damrcnt:= 0.01 * damprcnt;
597 vat(copy(st,51,10),hits,err);
598 vat(copy(st,61,10),criticats,err);
599 end;
600
601 function ficiLdam.next: refaciLdam;
602 var Lnk : refLink;
603 begin Lnk := Link.next; next := &LnkA; end;

C-2-11

oCOMMZ PROGRAM USTING

604
605 function faciLdam.pavement: boolean;
606 begin
607 if (catcode='11A') or (catcode='112A') or (catcode='113A') then
608 pavement true
609 eLse
610 pavement false;
611 end;
612
613 function facildam.pier: boolean;
614 begin
615 if (catcode='151C') then
616 pier true
617 else
618 pier false;
619 end;
620
621
622
623 {................... CUMATAKS METHODS }
624
625
626 constructor cumatks.init(day:integer);
627 var ij integer;
628 begin
629 nextLog nil;
630 startday day;
631 endday 999;
632 for i :0 to 10 do
633 begin
634 for j := 1 to 4 do cumpasses[j,i: 0.0;
635 cumsuprs[1,i: 0.0;
636 cumsuprs[2,i] 0.0;
637 end;
638 end;
639
640 procedure cumatks. accum(period: integer);
641 var i integer;
642 begin
643 for i : to 4 do
644 cumpasses[i,0] := cumpassesti,0 + cumpasses[i,periodJ;
645 cumsuprs[1,0: cumsuprs[1,0) + cumsuprsl,periodJ;
646 cumsuprs[2,0: cumsuprs[2,03 + cumsuprs[2,period3;
647 end;
648
649 function cumat:s.contrib(period:integer): boolean;
650 var i integer; test : real;
651 begin
652 test cumsuprs[lperiod] + cumsuprs[2,period3;
653 for i := I to nthrt do
654 test := test + cumpassesi,period];
655 if test > 0.0 then
656 contrib true
657 eLse
658 contrib faLse;
659 end;
660
661 procedure cumatks.close(nxtlog:refcumatks;day: integer);
662 begin
663 nextLog nxtlog;
664 endday day;
665 end;
666
667

procedure cumatks.prime;
669 var j : integer;
670 begin

C-2-12

COMMZ PROGRAM LISTING

671 for j := 1 to 4 do cumpassesEj,03 := 0.0;
672 cumsuprs[1,0 = 0.0;
673 cumsuprs[2,0: 0.0;
674 end;
675
676 procedure cumatks.range(nper,perLen:integer;daminfo:refnotnlinst;
677 var perstrt,perend:integer);
678 begin
679 perstrt ((startday-1) div perLen) +1;
680 if endday = 999 then
681 perend nper
682 eLse
683 perend := ((endday-1) div perten) + 1;
684 daminfoA.addsorties(perstrt,perend,cumpasses,cumsuprs);
685 end;
686
687
688 procedure cumatks.dump(supatks:booLean;pr:integer);
689 var ij : integer;
690 begin
691 for j := I to4do
692 begin
693 write('[',threatlj3,'/p ');
694 for i := 1 to pr do write(cumpassestj,i3:5:1);writeLn;
695 end;
696 if supatks then
697 for j := 1 to2 do
698 begin
699 write('[',threatEj3,'/s$ ');
700 for i := 1 to pr do write(cumsuprs[j,iJ:5:1);writetn;
701 end;
702 writeln;
703 end;
704
705
706 {................... INSTALLATION METHODS}
707
708 constructor instaLtation.init(var s:refdamage;
709 rec:string;var accept:booLean);
710 var
711 instype : string;
712 indam : refnotnlinst;
713 c,i,p : integer;
714 begin
715 instype := copy(rec,30,10);
716 indam := sA.find(instype);
717 if indam 0 niL then
718 begin
719 point.init(copy(rec,1,20.,",copy(rec,50,7),copy(rec,60,8));
720 ref instype; daminfo indam; nation := recE253;
721 accept true; suprsday 0;
722 for i I to nthrt do
723 begin passesliJ := 0.0; saturated[i3 := faLse; end;
724 if rec(27J = 1*' then unsat := true eLse unsat := false;
725 suprsatksEl3 := 0.0; suprsatks[23 := 0.0;
726 initatkLog new(refcumatks,init(1));
727 curatkLog initatkLog;
728 if indanr.threatstljA.satks > 0 then
729 begin
730 if (ref = 'NCAF 1) or
731 (ref = 'COB ') or
732 (ref = 'MOB ') then
733 begin airbase := true; port := false; end
734 else
735 if (ref = 'LGPORT ') or
736 (ref = 'SHPORT ') then
737 begin port := true; airbase := faLse; end

C-2-13

COMMZ PROGRAM LISTING

738 else0
739 begin
740 airbase := false;
741 port :=false;
742 end;
743 end
744 else
745 begin
746 airbase :=false;
747 port false;
748 end;
749 end
750 else
751 accept false;
752 end;
753
754 function instaLlation.next: refinstaLlation;
755 var Ink :ref Link;
756 begin Lnk :=Llnk.next; next := LnkA ; end;
757
758
759 procedure instaLLation.attack(var mt: reaL;var Log:text;thrtyp,dy,npr,
760 sprcycLe: integer; tn:string);
761 var
762 pcntair: real;
763 needs :real;
764 begin
765 if daminfoA. threatsEthktyp3 0 nil then
766 begin
767
768 if (not saturatedtthrtyp)) then
769 begin
770 if unsat then
771 needs := daminfoA.threats~thrtyp3 A patks
772 else
773 begin
774 if thrtyp > 2 then
775 needs :=daininfol. threats~thrtypJ A. patks
776 - passestthrtypJ
77 else
778 begin
779 pcntair
780 (passestlj / dami pfoA. threatsElj A. patks) +
781 (passesE23 / daiinfoA. threats[2J A patks)
782 needs :=(1-pcntair)*daminfoA threats~thrtyp3 A. patks;
783 end;
784 end;
785 writeln(log,dy:2,1 /l,name,needs:4:1,
786 '-',tn,amt:5:1);
787 if needs <mt then
788 begin
789 aint := mt - needs;
790 passes~thrtyp3 : 0;
791 if thrtyp < 3 then passesE3 - thrtyp3 : 0;
792 curatklogA. cumpasse3Ethrtyp,npr3 :
793 curatkLogA. cumpassesthrtyp,npr3 + needs;

794 fine(thrtyp,dy);
795 end
796 else
797 begin
798 passestthrtyp3:= passes~thrtyp3 + aint;
799 curatkLogA. cuipasses~thrtyp,npr3 :
800 curatklogA.cuinpassestthrtyp,npr3 + amt;
801 amt := 0;
802 end;
803 end
804 else

C-2-14

,COMMZ PROGRAM LISTING

* 805 if (airbase or port) and (thrtyp 0= 2) then
806 begin
807 if (dy - suprsday) >= sprcycLe then
808 begin
809 pcntair
810 ((suprsatks[1])/damjnfoA.thrests[13 A. satks) +
811 ((suprsatksE2J)/daminfoA. threatst23 A. satks);
812 needs :=(1-pcntai r)*daminfoA. threatstthrtypj A. satks;

*813 writetn(Log,dy:2,1 /l,name,needs:4:1,
814 1(sup) l,tn,amt:5:1);
815 if (0 < needs) then
816 begin
817 if (needs < amt) then
818 begin
819 amt :=amt - needs;
820 suprsday :=dy;

*821 suprsatks[13 0.0;
822 suprsatks(23 0.0;
823 curatktogA. cumsuprsEthrtyp,nprJ
824 curatktogA. cumsuprs~thrtyp,nprJ + needs;
825 end
826 eLse
827 begin
828 suprsatks~thrtyp3 : suprsatks~thrtyp3 + amt;

*829 curatkLogA. cumsuprs~thrtyp,npr3 :
830 curatktogA.cumsuprs~thrtyp,nprj + amt;
831 amt :=0;
832 end;
833 end;
834 end;
835 end;
836 end;

*837 end;
838
839 procedure instaLtation.fine(thrt,dy: integer);
840 begin
841 if noc.. u~r-t then saturated~thrt3 : true;
842 if thrt < 3 then
843 begin
844 suprsday : y

*845 suprsatksElJ 0;
846 suprsatksE23 0;
847 saturatedE3-thrt3 : saturated~thrt3;
848 end;
849 end;
850
851 procedure instattation.update(pr,day:integer;reset:bootean);
852 var t :integer;
853 newatk Log :ref cutnatks;
854 begin
855 if reset then
856 begin
857 newatktog :=new(refcumatks,init(day));
858 curatk LogA. ctose(newatktog,day);
859 curatktog :=newatktog;
860 for t :=I to nthrt do saturatedt): faLse;

*861 end;
862 end;
863
864
865
866 procedure instatation.property(var assets:inventory);
867 var
868 tgtfac : refacildam;

*869 findx,nt : integer;
870 begin
871 for nt : to nthrt do

C-2-15

.COMMZ PROGRAM LISTING

872 begin
873 if daminfo^.tnreats[nt] * nil then
874 tgtfac : daminfoA. threats[nt)A . first
875 eLse
876 tgtfac := niL;
877 while tgtfac * nit do
878 begin
879 findx := tgtfacA.xcatcode^ .repindx;
880 if assets[findxJ = 0.0 then
881 assetsrfindx] := tgtfacA.onhand;
882 tgtfac := tgtfacA.next;
883 end;
884 end;
885 end (property);
886
887
888 procedure instalLation.pdreport(period,day,maxf: integer;
889 var resuLts:damrep);
890 var atkrec : refcumatks;
891 fassets : inventory;
892 ij : integer;
893 damage : damrep;
894 begin
895 for i := 1 to maxf do
891 begin
897 fassets[i) : 0.0;
898 damage~i,13 := 0.0;
899 damage~i,23 : 0.0;
900 damage[i,33 : 0.0;
901 end;
902 property(fassets);
903 atkre" := initatkLog;
904 whiLe atkrec * nit do
905 begin
906 if atkrecA.contrib(period) then
907 begin
908 bda(period,maxf,atkrec,fassets,dmage);
909 for i := 1 to mxf do
910 if fassets~i] > 0.0 then
911 for j := 1 to 3 do
912 begin
913 resuLts[i,j]:=resultsli,j]+damage[i,j];
914 damageti,j3 := 0;
915 end;
916 end;
917 atkrec : atkrecA.nextLog;
918 end;
919 end;
920
921
922 procedure instatLation.bda(ip,nmf:integer;atks:refcumatks;
923 var assets: inventory;
924 var resuLts:damrep);
925 var
926 factr : array (1..43 of reaL;
927 factrs : array [l..2] of reaL;
928 tgtfaciL : refacitdam;
929 damchk : inventory;
930 i,nt,findx : integer;
931 pfactr : real;
932
933 begin
934 for i : 1 to mf do damchkli := 0.0;
935 for nt :1 to nthrt do
936 begin
937 if (daminfo^.threatslntj * nil) then
938 begin

C-2-16

COMMZ PROGRAM LISTING

*939 factrtnt3
940 (atksA.cumpasses~nt, ip3) / daminfoA.threatstnt3)A.patks;
941 pfactr :
942 (atksA.cumpasseslnt, 03) / daminfoA-.threatsrnt3A.patks;
943 if (airbase or port) and (nt < 3) then
944 begin
945 if (daminfoA*.threatstnt3 0 nil) and
946 (daminfoA.threats~nt)A.satks > 0) then

*947 factrstnt3 :
948 (atksl. cumsuprslnt, ip)
949 dami nfoA. threatslntJ A. satks
950 else
951 factrs~nt3 : 0.0;
952 end;
953 tgtfaciL : daminfo^.threatsrnt3 A. first;
954 white tgtfaciL o nil do

*955 begin
956 findx :=tgtfaciL A. xcatcode A repindx;
957 resuLts~findx,13 : resuLtstfindx,li
958 + factrtnt3 tgtfaci LA damprcnt * assets~findxJ;
959 damchk~findxj damchktfindx3
960 + pfactr * tgtfaCiLA.damprcnt * assetstfindx3;
961 resutts~findx,2J : resuLtsEfindx,23
962 + factrtnt3 * tgtfacilJA hits;

*963 resuttsrfindx,3J : resuLts~findx,3)
964 + factrtntJ * tgtfacitl.criticaLs;
965 if nt < 3 then
966 begin
967 if factrsrnt3 > 0 then
968 begin
969 if airbase then
970 begin

*971 if tgtfaciLA. pavement then
972 begin
973 resuLts~findx,33 resuLts~findx,33
974 + factrstnt3 tgtfaciLA criticaLs;
975 resuLts~findx,23 resuLtsEfindx,23
976 + factrslnt) tgtfaci LA hits;
977 end;
978 end

*979 else
980 if port then
981 begin
982 if tgtfaci LA~.pier then
983 begin
984 resuLts~findx,23 : results~findx,2)
985 + factrsCnt3 tgtfaciL A hits;
986 end;

*987 end;
988 end;
989 end;
990 tgtfacit : tgtfaciLA next;
991 end;
992 end;
993 end {nt Loop);
994 for i := Ito mfdo

*995 if assetsEi3 * 0 then
996 begin
997 if (damchkti3 + resuttsfi,13 > assetsti3 then
998 resutts~i,13 : assets~i3 - damchkti3;
999 if resuLtsli,13 < 0 then

1000 resuLts~i,13 : 0.0;
1001 end;
1002 atkSA accum(ip);

*1003 end;
1004
1005

C-2-17

COMMZ PROGRAM LISTING

1006 procedure instaI tLation.pmd(fx, pr, periodten: integer; •
1007 cList:refcatcodeList);
1008 var
1009 totdam array C1..103 of damrep;
1010 check : inventory;
1011 ip,findx integer;
1012 stper,endper integer;
1013 nt,i,j : integer;
1014 catcd : refcatcode;
1015 phase refcumatks;
1016
1017 begin
1018 writein;writetn('H+++++Instaltation summary for
1019 name:20, '++++++++++++++');writeLn;
1020 for i := 1 to pr do
1021 for j := 1 to fx do
1022 begin
1023 totdam[i,j,1: 0.0;
1024 totdamEi,j,2: 0.0;
1025 totdamti,j,3: 0.0;
1026 end;
1027
1028 for i := 1 to fx do checkEi: 0.0;
1029 property(check);
1030 phase := initatktog;
1031 white phase 0 nit do
1032 begin
1033 phaseA.dump((airbase or port), pr);
1034 phaseA.prime;
1035 phaseA.range(pr,periodtendaminfo,stper,endper);
1036 for ip := stper to endper do
1037 begin
1038 bda(ip,fx,phase,check,totdamip3);
1039 end;
1040 phase := phaseA.nexttog;
1041 end;
1042 catcd := cList^.first;
1043 writetn;writeLn('FACILITY DAMAGE');
1044 write(' FaciLity Catcode');
1045 for i := 1 to pr do write(' period',i:3); writeLn;
1046 write(' --------------------- 1);
1047 for i := 1 to pr do write(' ---------'); writetn;
1048 white catcd * nit do
1049 begin
1050 findx := catcd^.repindx;
1051 if check[findx] > 0 then
1052 begin
1053 write(catcdA.name:20,catcd^.code:4);
1054 for i := 1 to pr do write(totdamli,findx,1:10:1); -
1055 writeLn;
1056 end;
1057 catcd := catcd^.next;
1058 end;
1059 catcd := ctist^.first;
1060 writetn;writeLn('FACILITY HITS');
1061 write(' Facility Catcode');
1062 for i := I to pr do write(' period',i:3); writetn;
1063 writeC' --------------------- 1);
1064 for i := 1 to pr do write(' ---------'); writetn;
1065 white catcd <> nit ao
1066 begin
1067 findx := catcd^.repindx;
1068 if checkEfindx] > 0 then
1069 begin
1070 write(catcdA.name:20,catcd^.code:4);
1071 for i := 1 to pr do write(totdamli,findx,2]:10:1);
1072 writeLn;

C-2-18

COMMZ PROGRAM LISTING

1073 end;
1074 catcd := catcd^.next;
1075 end;
1076 if airbase then
1077 begin
1078 catcd := clistA.first;
1079 writetn;writeln;writetn('CRITICAL CRATERS');
1080 while catcd * nit do
1081 if catcdA.code < '120A' then
1082 begin
1083 findx := catcd^.repindx;
1084 if checkEfindxJ > 0 then
1085 begin
1086 write(catcdA.name:20,catcdA.code:4);
1087 for i := 1 to pr do write(totdamti,findx,3]:10:1);
1088 writeln;
1089 end;
1090 catcd catcdA.next;
1091 end
1092 else
1093 catcd nil;
1094 end;
1095 end;
1096
1097 PROFILE METHODS}
1098
1099 constructor profile.init2(s:string);
1100 var err : integer;
1101 begin
1102 head.init;
1103 vaL(copy(s,41,5),patks,err);
1104 if erro then
1105 begin
1106 writeLn('primary attack err ',s);
1107 patks := 0;
1108 end;
1109 vaL(copy(s,46,5),satks,err);
1110 if err*0 then
1111 begin
1112 writeln('secondary attack err ',s);
1113 satks := 0;
1114 end;
1115 end;
1116
1117 function profile.first: refacildam;
1118 var Lkg : reflinkage;
1119 begin Lkg := head.first; first := @Lkg^; end;
1120
1121
1122 {................... AREA METHODS }
1123
1124 function area.first: refinstalLati3n;
1125 var Lkg : reflinkage;
1126 begin 1kg := head.first; first @LkgA; end;
1127
1128
1129 procedure area.build(d : refdamage);
1130 var
1131 fn : text;
1132 valid : boolean;
1133 fyLe : string[203;
1134 iobuf : stringE80J;
1135 inst : refinstallation;
1136 begin
1137 write(' enter filename of target installations -- > ');
1138 readln(fyle); assign(fn, fyle); reset(fn);
1139 while not eof(fn) do

C-2-19

cqOMMZ PROGRAM LISTING

1140 begin
1141 readtn(fn,iobuf);
1142 new(inst,init(d,iobuf,valid));
1143 if not valid then
1144 writeLn('..no ref-instalL for ',iobuf:40)
1145 (dispose(inst) 1
1146 eLse
1147 inst^.into(@seLf);
1148 end;
1149 cLose(fn);
1150 end;
1151
1152 procedure area.postmortem(nfacs,nprd, Lenprd:integer;
1153 ftab:refcatcodetist;mask:string);
1154 var
1155 target refinstallation;
1156 begin
1157 target first; write(');
1158 whiLe target * niL do
1159 begin
1160 if (pos(targetA.nation,mask) > 0) or (maskC1] = '*') then
1161 target^.pmd(nfacs,nprd, Lenprd,ftab);
1162 target := targetA.next;
1163 end;
1164 end;
1165
1166 procedure area.dump;
1167 var c : refinstaLLation;cnt : integer;
1168 begin
1169 writeln('#RegionaL installations in priority order');
1170 c := first; cnt := 0;
1171 while c * niL do
1172 begin
1173 cnt := cnt + 1;
1174 writeLn('(',cnt:5,') ',cA.name:30,1 CNat=',cA.nation,13 ',
1175 cA.ref:15);
1176 c := cA.next;
1177 end;
1178 writeLn;
1179 end;
1180
1181 {................... CATCODE METHODS 0
1182
1183 constructor catcode.init(c,n:string);
1184 begin
1185 Link.init;
1186 code := c; name := n;
1187 end;
1188
1189 function catcode.next: refcatcode;
1190 var Ink : refLink;
1191 begin Ink := Link.next; next @LnkA; end;
1192
1193
1194
1195 {................... CATCODELIST METHODS }
1196
1197 function catcodetist.first: refcatcode;
1198 var Lkg : refLinkage;
1199 begin Lkg := head.first; first : tkgA; end;
1200
1201
1202 function catcodelist.add(s:string) : refcatcode;
1203 var
1204 c1,c2 refcatcode;
1205 cd string[4];
1206 begin

C-2-20
0a

COMMZ PROGRAM LISTING

1207 cd := copy(s,26,4);
1208 if empty then
1209 begin
1210 c2 := new(refcatcode,lnlt(cd,copy(s,3,20)));
1211 c2^.int3(@setf);
1212 add := c2;
1213 end
1214 else
1215 begin
1216 cl := first;
1217 whiLe cl <> niL do
1218 begin
1219 if clA.code < cd then
1220 begin
1221 cl := clA.next;
1222 if cl = nil then
1223 begin
1224 c2 := new(refcatcode,init(cd,copy(s,3,20)));
1225 c2^.into(@setf);
1226 add := c2;
1227 end;
1228 end
1229 eLse
1230 if cl.code > cd then*
1231 begin
1232 c2 := new(refcatcode,init(cd,copy(s,3,20)));
1233 c2A.precede(cl);
1234 add := c2;
1235 cl := niL;
1236 end
1237 eLse
1238 begin
1239 add := ci;
1240 ci := niL;
1241 end;
1242 end;
1243 end;
1244 end;
1245
1246 procedure catcodeList.dump;
1247 var c : refcatcode; cnt integer;
1248 begin
1249 writeLn('#REFERENCE JCS CATCODE LIST:');
1250 c := first;
1251 cnt := 0;
1252 whiLe c * niL do
1253 begin
1254 cnt := cnt + 1; cA.repindx := cnt;
1255 writetn('(',cnt:5,') IcA.code,I IcA.name);
1256 c := cA.next;
1257 end;
1258 end;
1259
1260 end.

C-2-21

Blank Page

LAST PAGE OF APPENDIX C-2

C-2-22

APPENDIX C-3

DAMOC PROGRAM LISTING

C-3-1

0

S

Blank Page

S

0

0

0

0

C-3-2

0

,DAMOC PROGRAM LISTING

1 program damoc;
2
3 uses simsetx,commz,dos;
4
5 "-
6 {-- AN.C..-..D=.C MAIN PROGRAM (8 MAY 91)==)
7
8
9 var
10 Log : text;
11 front : area;
12 dtabLe : refdamage;
13 instcLass : refnotnLinst;
14 ftabte : refcatcodeList;
15 faciL : refcatcode;
16 btable : refplaces;
17 ttabLe : refthreatList;
18 thrtgrp : refthreats;
19 itgt : refinstalLation;
20 day,maxday : integer;
21 period,nperiod : integer; { maxperiod < 10 }
22 i,j,xt : integer;
23 maxfac,facindex : integer; { maxfac <= 75 }
24 avail,needs : real;
25 factor,factorsup : real;
26 doubLe,sofrq : integer;
27 ssmfrq,sprsdays : integer;
28 reconst,reconstno : integer;
29 sorties : array (1..180,1..43 of real; Cmaxday <= 180}
30 reportbl,totals : damrep;
31 roLLup,rpis : inventory;
32 countries : string[lO];
33 repinstaL : boolean;
34 minutes : real;
35
36
37 procedure space;
38 begin
39 writeLn(' Avail Memory (heap) = ',memavaiL);
40 end;
41
42
43 function eLapsed(min:reaL):reaL;
44 var h,m,s,sl : word;min2 : real;
45 begin
46 gettime(h,m,s,sl);
47 min2 := (60.0*h + 1.0*m + s/60.0);
48 if min = 0 then
49 writeln(', time is ',h:2,':',m:2,':',s:2)
50 else
51 writetn(' [elapsed time is ',min2-min:7:3,1 minutesj');
52 elapsed := min2;
53 end;
54
55 begin
56

* 57 ------------------------------------ ----- Scenario Definition --- }
58
59 write(' heap memory =',memavaiL:10);
60 minutes := eLapsed(O.0);
61 write('Enter the number of days in the scenario ->');
62 readln(maxday);
63 write('SeLect country codes (a "*" means all included-->');
64 readLn(countries);
65 write('Length of period (and report cycle) -- >);
66 readLn(period);
67 if (maxday/period) > 10 then

C-3-3

,PAMOC PROGRAM LISTING

68 begin
69 writetn(' .. period maxday overflow.');
70 halt;
71 end;
72 write('Enter dayi'of double sorties & suppression period-->');
73 readln(dQJmble, sprsdays);
74 write('Enter-'Sof & SSM frequencies ->');
75 readtn(sofrq, ssmfrq);
76 write('Enter reconstitution period and number-->'); S
77 readLn(reconst, reconstno);
78
79 {-- Table Construction --. }
80
81 ftabLe new(refcatcodeList,init);
82 btabLe new(refpLaces,init);
83 btabLeA.buiId; btabLeA.dump;
84 ttable := new(refthreatList,init); •
85 ttableA.buitd(btabLe); ttabLeA.dump;
86 dtabLe := new(refdamage,init);
87 dtable^.bui d(ftabLe);
88 ftableA.dump; maxfac := ftabLeA.cardinaL;
89 dtabLeA.dump(maxfac);
90 front.init;
91 front.buiLd(dtabLe);
92 front.dump;
93
94 assign(log,'sortie, log');rewrite(Log);
95
96 --------------------------------- PARAETEPS & INITIALIZATION }
97
98 nperiod := 1;
99 if (pos('!',countries) > 0) then
100 repinstaL false 0
101 else
102 repinstaL true;
103
104 for i := 1 to maxfac do
105 begin
106 roLLupEiJ := 0.0;
107 rpis~i] := 0.0;
108 for j := 1 to 3 do
109 begin
110 totats~i,j3 := 0.0;
111 reportbLEi,j] := 0.0;
112 end;
113 end;
114
115 itgt := front.first;
116 while itgt 0 nil do
117 begin
118 if (pos(itgtA.nation,countries) > 0) or (countriesElj = '*') then
119 begin
120 itgtA.property(rpis);
121 for i := 1 to maxfac do
122 begin
123 rotlupEi3 := roLLupEi3 + rpisEi];
124 rpisti] := 0.0; -
125 end;
126 end;
127 itgt := itgtA.next;
128 end;
129
130 for i := I to nthrt do for j := I to maxday do sorttes~j,i = 0.0;
131
132 start day by day simulation }
133
134 for day := 1 to mxday do

C-3-4
S

,PAMOC PROGRAM LISTING

*135 begin
136 wrteC 1=--=day(1 ,day,)');minutes :eLapsed(minutes);
137
138 -C .. .attack process====------ - -- -- -

139
140 thrtgrp :=_ttabte A. first;
141
142 white thrtgrp 0 nit do

*143 beginI
144 xt := thrtgrpA.thrtype;
145 thrtgrpA.update(day, Log);
146- case xt of
147 (ftr)
148 1: if thrtgrpA.readyrate > 0 then
149 begin
150 avaiL :=thrtgrpA.amount * thrtgrpA.readyrate

*151 *(1.0 - thrtgrpA.attrition);
152 thrtgrpA.amount := (1.0 - thrtgrpA.attrition) *thrtgrpA.amount;
153 if day <-- double then
154 begin
155 avail avail + thrtgrpA.amount * thrtgrpA.readyrate
156 *0(.0 - thrtgrpA. attrition);
157 thrtgrpA.amount (1 .0 - thrtgrpA attrition) *thrtgrpA.amount;
158 end;

*159 if thrtgrpA.amount < thrtgrpA.minimum then
160 thrtgrpA.amount :=thrtgrpA. minimumn;
161 end
162 etse
163 avaiL :=0;
164
165 (bmbr}
166 2: if thrtgrpA.readyrate > 0 then

*167 begin
168 avaUL := thrtarpA.amount * thrtgrpA.readyrate
169 * (1.0 - tllrtgrpA attrition);
170 thrtgrpA.amount :=.1.0 - thrtgrpA.attrition) *thrtgrpA.amount;
171 if thrtgrpA.amount < thrtgrpA.mininmum then
172 thrtgrpA,.amount := thrtgrpA.minimum;
173 end
174 else

*175 avaiL := 0;
176
177 (sof days 1, 1+sofrq, 1+2*sofrq ... 1
178 3: if (day mod sofrq =1) and (thrtgrpA readyrate > 0) then
'179 begin
180 avaiL :=int(thrtgrpA.amount
181 * (1-thrtgrpA.readyrate)40.5); (pre tgt attritl
182 thrtgrpA amount :=int(avait *

* 183 (0 - thrtgrpA.attrition).0.5); (post tgt attritionl
184 end
185 else
186 avaiL := 0.0;
187
188 Cssm'
189 4: if (day mod ssmfrq = 1) and (thrtgrpA readyrate > 0) then
190 begin

*191 if thrtgrpA.amount > 0 then
192 begin
193 avai L := int(thrtgrpA.amount*thrtgrpA.attrition+0.5);
194 if avail > 0 then
195 thrtgrp'A.amount := thrtgrpA.amount - avail
196 else
197 if thrtgrpA.amount > 1 then
198 begin

*199 avail := 1;
200 thrtgrpA amount := thrtgrpA.amount - avail;
201 end

C-3-5

DAMOC PROGRAM LISTING

202 else
203 avail: 0.0;
204 end
205 eLse
206 .,,---avait := 0.0;
207 end
208 " e se
209 " avaiL 0.0;
210
211 else avail= 0.0;
212 end;
213
214 sortiesEday,xt] := sorties[day,xt] + avail;
215 if avail > 0 then
216 itgt front.first
217 else
218 itgt nit; •
2;9 whiLe itgt * nil do
220 begin
221 if thrtgrpA.reaches(itgt) then
222 itgtA.attack(avai L, Log,xt,day,nperiod,sprsdays,
223 thrtgrp^.name);
224 if avail <= 0 t.en
225 itgt : nil
226 eLse 0
227 itgt itgtA.next;
228 end;
229 writetn(Log,' ... [',day:2,'3... I,thrtgrpA.name,
230 1 - unused ',avaiL:5:1);
231 thrtgrp := thrtgrpA.next;
232 end {xt Loop);
233
234 report process} 0
235
236 if ((day mod period) = 0) or (day = maxday) then
237 begin
238 itgt := front.first;
239 whiLe itgt * nit do
240 begin
241 if (pos(itgtA.nation,countries) > 0) or (countriesElI = '*') then
242 begin
243 itgtA.pdreport(nperiod,day,mxfac, reportbL);
244 end;
245 itgt := itgtA.next;
246 end;
247 writetn;writeLn('#Report for period ending dayl,day:3,' for countries
248 ',countries);
249 facit := ftabLeA.first;
250 1:O; 0
251 writetn;writetn('CatCode Facility ',
252 O 0nhand Damage Hits Craters ');
253 writeLn(------- ----------------- 1,
254 t ---------- ..--------- ..------- ..--- .---
255 white facil * nil do
256 begin
257 1 := i + 1;
258 write(C[,facitA.code,J ''); 0
259 write(faci L^.name:22);
260 write(roLLupE13:12:0);
261 write(reportbt[i,1]:12:1);
262 writeLn(reportbtLi,2J:1O:2,reportbLti,33:10:2);
263 for j := I to 3 do
264 begin
265 totatsEl,j3 := totatsli,jJ + reportbLti,j3;
266 reportbL.i,j3 := 0.0; 0
267 end;
268 faciL :: faciL^.next;

C-3-6

pAMOC PROGRAM LISTING

269 end;
270 end;
271
272 C Installation damage reconstitution process I
273
274 begin
275 if (dayiod reconst) = 0 then
276 begin
277 if reconstno > 0 then
278 begin
279 reconstno reconstno - 1;
280 writeLn('--instaLLations reconstituted at day ',day:5);
281 itgt := front.first;
282 white itgt * nil do
283 begin
284 itgtA.update(nperiodday,((day mod reconst)= 0));
285 itgt itgtA.next;
286 end;
287 end
288 else
289 reconst 999;
290 end;
291 ..}
292
293 if ((day mod period) = 0) then nperiod := nperiod + 1;
294 { writeLn('---faciLity damage accumulated at day',day:5);)
295 end;
296
297 end {day Loop);
298
299 - simulation portion completed I
300
301 close(log);
302
303 writetn;writeLn('#Summary Report for entire period (',day:4,
304 'days) for countries ',countries);
305 faciL := ftabLeA.first; i := 0;
306 writetn;writeln(CatCode Facility 1,
307 ' Onhand Damage Hits Craters ');
308 writetn(' ------------------------ it
309 .----------.-------------------------- ;
310 whiLe faciL * nit do
311 begin
312 1 := i + 1;
313 write(IEI,facilA.code,13 ');
314 write(faciL^.name:22);
315 write(roltupti3:12:0);
316 write(totaLsti,13:12:1);
317 writeLn(totaLsi,23:10:2,totaLsEi,33:10:2);
318 faciL := faciLA.next;
319 end;
320 minutes := elapsed(minutes);
321
322 { optional reports !' I
323
324 if repinstat then
325 begin
326 front.postmortem(maxfac,nperiod-l,period,ftable, countries);
327 minutes := elapsed(minutes);
328 dtabLeA.breakout(nperiod-1);
329 minutes := elapsed(minutes);
330 end;
331
332 writeLn;writeln('SortiCs summary: ');writeln;
333
334 for j := 1 to nthrtdo
335 begin

C-3-7

)DAMOC PROGRAM USTING

336 write('(T=',j:l,')');0
337 for := Ito maxday do
338 begin
339 write(sortiesl,j3:3:O);
340 if (1 modirniod) =0 then lwrite(' P);
Al1 end;
342 writetn;-
343 end; -

345 writeLn;writeC heap mem.-y =',ueavaiL:10);iriutes elapsed(0.0);
346 end.

LAST PAGE OF APPENDIX C-3

C-3-8

0i

STUDYtng~eer GIST
~ntdesr A THREAT-BASED THEATER WAR

enter DAMAGE METHODOLOGY
CEESC-R-9'I-20

PRINCIPAL FINDINGS: Among the most difficult tasks confronting engineer and logistics planners
is estimating war damage to infrastructure and installation facilities. The U.S. Army Engineer Studies
Center (ESC) has been wrestling with this problem since the late 1970s while analyzing engineer
requirements under various operational plans. The early assessments used different approaches to
estimating war damage. The lack of uniformity and inability to reuse these disparate approaches
prompted ESC to develop a general damage methodology that has the following advantages:

* Thrqt-Based: Damage is purposely constrained to the capability of threat forces. Damage
from threat fighter, bomber, surface-to-surface missiles, and special operations forces can be assessed.
Various operational attributes are also identified (e.g., range, ordnance load, readiness).

- Scenario-Dependent: The methodology requires that all installation targets and applicable
0 enemy bases, or origins, be identified. While not a combat model, it can emulate changes in the

theater disposition by varying attrition and readiness rates, as well as threat redeployments. These
data would correspond to guidance from intelligence sources, operational plans, or wargamed results.

* Detailed Results: Results are calculated at installation/facility level. While rollup reports
on user-defined time periods and installation groupings are available, the user can modify the software

0 and access or portray even more detailed data.

* Accessible and Adaptable: ESC's implementation uses software that can run on any PC-
compatible microcomputer. This makes the methodology as universally available as possible.
Furthermore, the threat-dependent theater portion of the methodology employs an object-oriented
model that greatly facilitates extensibility if additional features are desired.

SCOPE OF TIE STUDY: The study consists of a main paper and three annexes. The main portion
describes the rationale, assumptions, and operational features. (The methodology is essentially two-
phased: the first requires the use of a detailed damage assessment computer program; the second
utilizes a theater damage model developed by ESC.) The annexes document the input, output, and
internal code of the theater model.

REPORT OBJECTIVE: The purpose of this document is to describe the background and features
of ESC's threat-based war damage methodology, define data requirements, and present examples of
input and output. A secondary objective is to promote the transfer and distribution of the
methodology to defense organizations concerned with the problem.

BASIC APPROACII: ESC's objective was to develop a reasonable and reproducible, threat-based
system to estimate facility damage across a theater. A L.,o-phased approach evolved. A detailed
installation-level damage model is used to generate a library of attack results (damage profiles). The

library is then one input to the deterministic theater damage assessment model, along with scenario
specific information regarding threat capability and targets. The assessment model is more an
allocation than an explicit damage model since its purpose is to distribute threat assets among theater
targets according to defined target priorities, mission requirements, and sortie constraints. Damage
is calculated by referencing the appropriate entry in the profile library. Therefore, it is not necessary
to repeat the calculations already made in the detailed damage model. Theater damage thus becomes
a process of allocating missions against identified targets or classes of targets and assessing the
expected damage associated with that allotment.

REASONS FOR PERFORMING TIlE STUDY: In addition to their mission of constructing and
maintaining the theater sustainment base, engineers are responsible for repairing or replacing facilities
that are damaged. Planning fr the expected amount and kinds of repair, however, is confounded
by the vagaries of war. Theater wargames typically ignore most rear area installations, or estimate
rear area damage in such broad (or parochial) terms as to be useless for repair estimates. Separate
installation-level programs exist that model the effect of individually-targeted munitions and the
resulting direct and collateral facility damage. But such programs usually examine one attack against
one installation, and are too cumbersome and detailed to be useful at theater-level. ESC has
developed a methodology that builds on the capabilities of these detailed installation-level models.
An approach was formulated that utilizes the output of these high resolution models, the best
available intelligence, and the estimates of theater-level enemy capability to project damage by facility,
installation, and time. Having succeeded in implementing this approach, ESC sought to document
the methodology and piblicize its availability.

STUI)Y SPONSOR: Deputy Director for Plans and Resources, J-4, Joint Chiefs of Staff.

PERFORMING ORGANIZATION AND PRINCIPAL AUTHORS: The study was prepared by the
U " Army Engineer Studies Center. The principal author was Robert Halayko.

DTIC ACCESSION NUMBER OF FINAL STUIY: Pending.

COMMENTS AND SUGGESTIONS MAY BE SENT TO: Commander, U.S. Army Engineer Studies
Center, Casey Building #2594, Fort Belvoir, Virginia 22060-5583.

START AN[) COMPLETION DATES OF STUDY: Starting Date: January 1991
Completion Date: June 1991

